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OVERVIEW & PURPOSE 

This course intended to introduce the deep learning algorithms by explaining the concepts, the math’s 

associated with, and finally a simple implementation.  
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D. Optimization 
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III. Multi-Layer Perceptron 

A. Underfitting, Overfitting 

B. Weight decay, Dropout  



 

  

C. Forward Propagation 

D. Backward Propagation 

E. Initialization techniques and Numerical Stability 

F. Implementation 

 

IV. Convolution Neural Network 

A. Convolution Operation 

B. Padding and Stride 

C. Pooling 

D. Fully Connected Network 

E. Implementation 

V. Recurrent Neural Network 

A. Motivation 

B. Design  

C. Perplexity Measure 
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OBJECTIVES 

1. Understanding of the literature. 

2. Presentation of the maths used. 

3. Connection between literature and maths through implementation examples. 

MATERIALS NEEDED 



 

  

1. Google Colab/ Jupyter Notebook 

2. Pytorch 

 

 

 

PRELIMINARIES 

A. INTRODUCTION 

Deep learning is a part of machine learning that focuses on artificial neural networks which is 

inspired by the working of the human brain to process through the input to predict the output. 

In simple terms, deep learning is a machine learning method that takes the input X to predict 

the output Y. The inputs can be numeric representation of texts, images, sounds or tabular data. 

The ‘Deep’ part in the word ‘Deep Learning’ refers to the large number of layers in neural 

networks used to improve its ability to capture complex functions. 

For any machine learning problem, the main components that we need to focus on are: 

● Data used to train the model 

● Model on how to transform the data 

● Objective function to judge the correctness of the model 

● Algorithm to adjust the model parameters to minimize loss 

 

B. DATA  

Data in Deep Learning can be seen as the collection of data points or samples or examples with 

which the model can be trained which is then used to predict for data that hasn’t been 

encountered before. Each data point typically consists of a collection of either numerical or 

categorical attributes called features and a separate feature for which the prediction is to be 

made known as the target. In the case of a classification problem, the target variable is 

categorical whereas in the case of a regression problem, the target variable is numerical.  

We'll use the MNIST data set, which contains tens of thousands of scanned images of 

handwritten digits, together with their correct classifications. 

http://yann.lecun.com/exdb/mnist/


 

  

The data then can be split into Training Data, Validation Data and Test Data. 

Training Data: The data used to train the model. 

Validation Data: The data used to tune the hyperparameters of the model. 

Test Data: After the model is trained, the model is used on the Test Data to get the predictions 

and compare it with the actual values to help evaluate the model. This data is not accessed 

during the training and is used only to assess the final performance. 

 

C. MODEL 

Most deep learning algorithms involve transforming the data in some sense. Depending on the 

type of input data we are dealing with, it is important to select the type of modelling approach 

we take to tackle the problem. For example, image data can be handled well by the likes of 

CNNs, textual data by RNNs or depending on the data, statistical models can be the best bet. 

Selecting the right model could mean a huge difference in terms of efficiency and accuracy of 

the results. 

 

D. OPTIMIZATION 

Most deep learning algorithms involve optimization of some sort. Optimization refers to the task 

of either minimizing or maximizing some function f(x) by altering x. We usually phrase most 

optimization problems in terms of minimizing f(x). Maximization may be accomplished via a 

minimization algorithm by minimizing f(x). 

The function we want to minimize or maximize is called the objective function or criterion. 

When we are minimizing it, we may also call it the cost function, loss function or error function. 

The choice of the objective function has an impact on the speed of learning and the overall 

accuracy. Each learning task requires an adapted objective function. In practice, one should 

benchmark results obtained from different objective functions and fine-tune the hyper-

parameters that best suit the task at hand. 

 

E. TYPES OF LEARNING 

The types of learning algorithms differ in their approach, the type of data they input and output, 



 

  

and the type of task or problem that they are intended to solve. The following are different 

types of machine learning algorithms- 

 

1) Supervised learning 

Supervised learning is when the model is getting trained on a labelled dataset. Labelled 

dataset is one which has both input and output parameters. 

2) Unsupervised learning 

Unsupervised learning is used against data without any historical labels. The system is 

not given a predetermined set of outputs or correlations between inputs and outputs or 

a “correct answer.” The algorithm must figure out what it is seeing by itself, it has no 

storage of reference points. The goal is to explore the data and find some sort of 

patterns of structure. 

3) Semi-supervised learning 

Semi-supervised learning falls somewhere in the middle of supervised and unsupervised 

learning. It is used because many problems that AI is used to solving require a balance of 

both approaches. 

In many cases the reference data needed for solving the problem is available, but it is 

either incomplete or somehow inaccurate. This is when semi-supervised learning is 

summoned for help since it is able to access the available reference data and then use 

unsupervised learning techniques to do its best to fill the gaps. 

4) Reinforcement learning 

Reinforcement learning is a type of dynamic programming that trains algorithms using a 

system of reward and punishment. 

A reinforcement learning algorithm, or agent, learns by interacting with its environment. 

It receives rewards by performing correctly and penalties for doing so incorrectly. 

Therefore, it learns without having to be directly taught by a human – it learns by 

seeking the greatest reward and minimising penalty. This learning is tied to a context 

because what may lead to maximum reward in one situation may be directly associated 

with a penalty in another. 

 



 

  

5) Self learning 

Self-learning as a machine learning paradigm was introduced in 1982 along with a neural 

network capable of self-learning named Crossbar Adaptive Array (CAA).  It is a learning 

with no external rewards and no external teacher advice. The CAA self-learning 

algorithm computes, in a crossbar fashion, both decisions about actions and emotions 

about consequence situations. The system is driven by the interaction between 

cognition and emotion. 

Linear Neural Network 

A. Linear Regression 

This is the task of predicting a real valued target y given a data point x. In linear 

regression, the simplest and still perhaps the most useful approach, we assume 

that prediction can be expressed as a linear combination of the input 

features.[1] 

   𝑦^   = 𝑤1 ⋅ 𝑥1+. . . +𝑤𝑑 ⋅ 𝑥𝑑 + 𝑏 or       

matrix-vector notation: 𝑦 ̂ = 𝑋𝒘 𝑻 + 𝑏 

 

 

   source: J. Alammar. https://jalammar.github.io/visual-interactive-guide-basics-neural-networks/ 

 

   

    

 

 

https://jalammar.github.io/visual-interactive-guide-basics-neural-networks/


 

  

Example 1: Consider receiving a quote of  $400,000 for a  2000 sq ft   house 

(185 meters). Is this a good price considering our historical pricing? 

 

 

 

 

 

 

 

1. Let’s plot the data points. The black dots is the predicted price which 

is clearly less than $400,000 for a  2000 sq ft. 



 

  

 

2. Loss function. 

In order to say whether we’ve done a good job, we need some way 

to measure the quality of a model. Generally, we will define a loss 

function that says how far are our predictions from the correct 

answers. 

 

source: J. Alammar. https://jalammar.github.io/visual-interactive-guide-basics-neural-networks/ 

https://jalammar.github.io/visual-interactive-guide-basics-neural-networks/


 

  

  

 

B. Softmax Regression 

In contrast to Linear Regression that predicts a real value y for a 

given data point x, Softmax Regression or Logistic Regression 

predicts the probability for an event or data point to belong to a 

category.  

 

 

 

Example 2: Consider receiving a list of houses with features Area 

and number of bathrooms. How do we classify one house as Good 

or Bad based on our historical labeled data? 



 

  

 

 

 

 

C. Implementation 

Logistic Regression on MNIST with PyTorch 

 

1. Load Mnist Dataset 

  

2. Data Split 



 

  

 

3.  Model 

 

4.  Training and Evaluation 

 

 



 

  

Multi-Layer Perceptron 

A. Underfitting, Overfitting 

A model or algorithm is said to have underfitting when it cannot capture the underlying 

trend of the data. It occurs when the model or algorithm does not fit the data enough. 

Underfitting occurs if the model or algorithm shows low variance but high bias. It is 

often a result of an excessively simple model. 

A model or algorithm is said to be overfitted, when we train it with a lot of data. It 

occurs when the model or algorithm contains more parameters than can be justified by 

the data. Overfitting occurs if the model or algorithm shows high variance but low bias 

B. Weight decay, Dropout 

Weight decay is used to prevent overfitting. Having fewer parameters is only one way of 

preventing our model from getting overly complex. But it is actually a very limiting 

strategy. More parameters mean more interactions between various parts of our neural 

network. Thus to use more parameters without making it overly complex we use weight 

decay. It is added to the loss function and acts as an additional term in the weight 

update rule that causes the weights to exponentially decay to zero. 

Dropout is a regularization technique for reducing overfitting in neural networks by 

preventing complex co-adaptations on training data. It is a very efficient way of 

performing model averaging with neural networks. The term "dropout" refers to 

dropping out units (both hidden and visible) in a neural network. 

 

C. Forward Propagation 

Forward propagation refers to the calculation and storage of intermediate variables 

(including outputs) for the neural network in order from the input layer to the output 

layer. The input X provides the initial information that then propagates to the hidden 

units at each layer and finally produces the output y^. The architecture of the network 

entails determining its depth, width, and activation functions used on each layer. Depth 

is the number of hidden layers. Width is the number of units on each hidden layer since 

we don’t control neither input layer nor output layer dimensions. 

 



 

  

D. Backward Propagation 

Backward propagation is the practice of fine tuning the weights of a neural net based on 

the error rate (i.e. loss) obtained in the previous epoch. This process is essential in 

making the model reliable by increasing its generalization. Once we calculate the loss 

after an epoch, based on it, we can fine tune the weights with the help of an 

optimization function such as Gradient Descent which helps us find the weights that will 

hopefully yield a smaller loss.  

 

E. Initialization techniques and Numerical Stability 

Performance of the model depends highly on the type of activation functions we use 

and the initialization strategy we undertake. Using activation functions like sigmoid 

function can lead to what’s called vanishing gradient problem where the gradient is 

close to zero when the inputs are either too large or small. There’s also a chance where 

the matrix product can yield very high values which is called the exploding gradient 

problem. These can be avoided by choosing the right activation functions (like RELU) 

and proper weight initialization by selecting the right distribution. 

 

The working of a multi-layer perceptron can be encapsulated by the following flowchart. 

 

 



 

  

 

 

F. Implementation (complete code in appendix) 

 

#Overfit model 

 

 

 #Weight decay 

 

 

 

#Dropout 



 

  

 

 

 

Convolutional Neural Networks 

Regular neural networks scale poorly when the data has a two-dimensional structure such as an 

image or a speech signal. For example, for images of size 32 x 32 x 3, the first hidden layer alone 

will have 3072 weights. This can increase substantially for a fully connected structure and for 

larger images. Convolutional Neural Networks (CNNs) are designed in such a way to take 

advantage of the 2D structure of input data while using considerably fewer parameters than fully 

connected networks. 

The general idea behind CNNs is to start looking for some low-level features such as edges and 

curves in the case of image data and then building up to more abstract concepts through a series 

of convolutional layers. 

A. Convolutional layer 

The convolutional layer will compute the output of neurons that are connected to local regions in 

the input, each computing a dot product between their weights and a small region they are 

connected to in the input volume. Convolution preserves the spatial relationship between pixels 



 

  

by learning image features using small squares of input data. The feature map is obtained by 

running the filters over the image whose values are made non linear by using an activation 

function like ReLU. 

  

     

   

 

 B. Padding and Stride 

After convolution, the feature is reduced in dimensionality as compared to the input. Depending 

on the type of images we are dealing with, we may want to secure or increase the dimensionality 

of the image or considerably reduce it. We can preserve or increase the dimensionality of the 

image by padding or reduce drastically using stride. Valid Padding (left of the below image)is 

where no padding is added and the dimensionality is reduced after convolution whereas Same 

Padding (right of the below image) is where extra filler cells are added around the boundary of 

the feature matrix and depending on the size of the padding used, dimensionality is either 

increased or remains the same. 

 



 

  

  

       Valid Padding     Same Padding 

In cases where we need to reduce the dimensionality of the feature matrix either for 

computational efficiency or downsampling, we can use stride. By default the kernel is slid over 

the image one pixel at a time. By introducing a stride, which says by how many pixels to move at 

a time, we can go through the feature matrix quickly. 

 

 

 

C. Pooling 

Another way to decrease the computational power required to process the data through 

dimensionality reduction is pooling. It is useful for extracting dominant features which are 

rotational and positional invariant. There are two types of pooling: Max Pooling returns the 

maximum value of the portion of the image covered by the kernel and Average Pooling returns 

the average of all the values from the portion of the image covered by the kernel. 

 



 

  

 

 

D. Fully connected layer 

A fully connected layer is a useful way of learning non-linear combinations of high- level features 

as represented by the output of the convolutional layer. The output from the convolutional layers 

are flattened and fed to a multi-layer perceptron and helps in the classification process. Below is 

a sample architecture of a CNN network. 

 



 

  

 

    

Recurrent Neural Network 

A. Motivation 

Recurrent Neural Networks or RNNs are a special type of neural 

network designed for sequence problems. Given a standard feed-

forward multilayer Perceptron network, a recurrent neural network can 

be thought of as the addition of loops to the architecture. 

 

 

B. Design 



 

  

1. Intuitively, someone can think of a series of Vanilla networks (NN)  to deal with 

the sequential problem.But, the repeated Vanilla networks as you can see in fig 

below, does not capture relationships across inputs meaningfully. That’s where 

the Recurrent neural network architecture has  come to play a crucial role in the 

problem of sequential data. 

 

2. The recurrent neural network architecture can be seen as a standard feed-

forward multi-layer perceptron where we add loops in the architecture.Now, to 

control the amount of information to be remembered or forgotten,to learn 

broader abstractions from the input sequences, we add the concept of states. 

 

 

Input:𝑿 𝒕 ∈ 𝑹 𝒏𝒙𝒅𝑿 𝒕 ∈ 𝑹
𝒏𝒙𝒅

, 𝒕 = 𝟏, … , 𝑻.X(t) is taken as the 

input to the network at time step t. For example, x1,could be a one-hot vector 



 

  

corresponding to a word of a sentence. 

Hidden state: h(t) represents a hidden state at time t and acts as “memory” of 

the network. h(t) is calculated based on the current input and the previous time 

step’s hidden state:𝑯 𝒕 = 𝝓(𝑿 𝒕𝑾 𝒙𝒉 + 𝑯 𝒕−𝟏𝑾 𝒉𝒉 + 𝒃 𝒉). The 

function f is taken to be a non-linear transformation such as tanh, ReLU. 

Weights: 𝑊 ℎℎ ∈ 𝑅 ℎ𝑥ℎ
.The RNN has input to hidden connections 

parameterized by a weight matrix U, hidden-to-hidden recurrent connections 

parameterized by a weight matrix W, and hidden-to-output connections 

parameterized by a weight matrix V and all these weights (U,V,W) are shared 

across time. 

Output: O(t) The output of the fully connected layer is the hidden state of the 

current timestep  Ht . Its model parameter is the concatenation of  Wxh  and  Whh 

, with a bias of  bh . The hidden state of the current timestep  t ,  Ht , will 

participate in computing the hidden state  Ht+1  of the next timestep  t+1 . What 

is more,  Ht  will become the input for  Ot , the fully connected output layer of the 

current timestep:𝑂 𝑡 = 𝐻 𝑡𝑊 ℎ𝑞 + 𝑏 𝑞. 

Word-level RNN language model. The input and label sequences are the 

time machine by H. and the time machine by H. G. respectively. 

.  

3.  Train Recurrent Neural Networks 

a) The RNN forward pass can thus be represented by below set of 

equations: 



 

  

 

b) Backpropagation through time (BPTT) is actually a specific 

application of back propagation in recurrent neural networks.It 

requires us to expand the recurrent neural network one time 

step at a time to obtain the dependencies between model 

variables and parameters. Then, based on the chain rule, we 

apply backpropagation to compute and store gradients 

 In this simplified model above, we denote  ht  as the hidden 

state,  xt  as the input, and  ot  as the output at timestep  t . In 

addition,  wh  and  wo  indicate the weights of hidden states 

and the output layer, respectively. As a result, the hidden 

states and outputs at each timesteps can be explained as: 

ℎ𝑡 = 𝑓(𝑥𝑡, ℎ𝑡 − 1, 𝑤ℎ) 𝑎𝑛𝑑 𝑜𝑡 = 𝑔(ℎ𝑡, 𝑤𝑜) 

The discrepancy between outputs  ot  and the desired targets  

yt  is then evaluated by an objective function as: 

𝐿(𝑥, 𝑦, 𝑤ℎ, 𝑤𝑜) = ∑

𝑇

𝑡=1

𝑙(𝑦𝑡, 𝑜𝑡) 

𝜕 𝑤ℎ𝐿 = ∑

𝑇

𝑡=1

𝜕 𝑤ℎ𝑙(𝑦𝑡, 𝑜𝑡) 

= ∑

𝑇

𝑡=1

𝜕 𝑜𝑡𝑙(𝑦𝑡, 𝑜𝑡)𝜕 ℎ𝑡𝑔(ℎ𝑡, 𝑤ℎ)[𝜕 𝑤ℎℎ 𝑡]. 

The Computational Graph below illustrates the BPTT (L is the loss) 



 

  

 

 

C. Perplexity Measure 

1. In general, perplexity is a measurement of how well a probability model 

predicts a sample. In the context of Natural Language Processing, perplexity 

is one way to evaluate language models. 

2. One way is to check how surprising the text is. A good language model is able 

to predict with high accuracy tokens which we will see next. Consider the 

following continuations of the phrase “It is raining”, as proposed by different 

language models: 

a) “It is raining outside” 

b) “It is raining banana tree” 

c) “It is raining piouw;kcj pwepoiut” 

In terms of quality, example a) is clearly the best,example b) is 

considerably worse by producing a nonsensical extension, and last, 

example c) indicates a poorly trained model that does not fit data 

properly. 

   𝑃𝑃𝐿 = 𝑒𝑥𝑝 (−
1

𝑛
∑𝑛

𝑡=1 𝑙𝑜𝑔𝑝(𝑥 𝑡|𝑥 𝑡−1
, . . . , 𝑥 1  ) 

3. Interpretation of the Perplexity value: 

(1) In general,higher is the Perplexity value and worse is the model. 

(2) In the best case scenario, the model always estimates the probability of 

the next symbol as 1 In this case the perplexity of the model is 1 



 

  

(3) In the worst case scenario, the model always predicts the probability of 

the label category as 0. In this situation, the perplexity is infinite. 

(4) At the baseline, the model predicts a uniform distribution over all tokens. 

In this case, the perplexity equals the size of the dictionary len(vocab) 

 

 

 

 

 

 

 

 

 

 

CNN Code for Appendix 

# Standard library 

import random 

import numpy as np 

 

#importing MNIST dataset 

from tensorflow.examples.tutorials.mnist import input_data 

mnist = input_data.read_data_sets('/home/server/datasets/MNIST_data/') 

mnist_data = list(mnist) 

 



 

  

mnist_train = mnist_data[:20]     #  20 train images 

mnist_val   = mnist_data[100:5100]      # 2000 validation images 

 

class MNISTClassifier(object): 

   def __init__(self): 

   super(MNISTClassifier, self).__init__() 

   self.layer1 = nn.Linear(28 * 28, 50) 

self.layer2 = nn.Linear(50, 20) 

    self.layer3 = nn.Linear(20, 10) 

 #activation function ReLu with feed forward 

 def forward(self, img): 

          flattened = img.view(-1, 28 * 28) 

          activation1 = F.relu(self.layer1(flattened)) 

          activation2 = F.relu(self.layer2(activation1)) 

          output = self.layer3(activation2) 

          return output 

def train(model, train, valid, batch_size=20, num_iters=1, learn_rate=0.01, weight_decay=0): 

train_loader = torch.utils.data.DataLoader(train, batch_size=batch_size,shuffle=True)  

# shuffle after every epoch 

criterion = nn.CrossEntropyLoss() 

optimizer = optim.SGD(model.parameters(), lr=learn_rate, momentum=0.9, 

weight_decay=weight_decay) 

 

     iters, losses, train_acc, val_acc = [], [], [], [] 



 

  

 

     # training 

     n = 0  # the number of iterations 

     while True: 

          if n >= num_iters: 

               break 

          for imgs, labels in iter(train_loader): 

               model.train()  

               out = model(imgs)             # forward pass 

               loss = criterion(out, labels) # computing the total loss 

               loss.backward()       # backward pass  

               optimizer.step()              # make the updates for each parameter 

               optimizer.zero_grad()         # a clean up step for PyTorch 

              # saving the current training information 

               if n % 10 == 9: 

                   iters.append(n) 

                   losses.append(float(loss)/batch_size)         

# computing *average* loss 

                   train_acc.append(get_accuracy(model, train))  

# computing training accuracy  

                   val_acc.append(get_accuracy(model, valid))    

# computing validation accuracy 

                n += 1 

  # plotting 



 

  

      plt.figure(figsize=(10,4)) 

      plt.subplot(1,2,1) 

      plt.title("Training Curve") 

      plt.plot(iters, losses, label="Train") 

      plt.xlabel("Iterations") 

      plt.ylabel("Loss") 

 

      plt.subplot(1,2,2) 

      plt.title("Training Curve") 

      plt.plot(iters, train_acc, label="Train") 

      plt.plot(iters, val_acc, label="Validation") 

      plt.xlabel("Iterations") 

      plt.ylabel("Training Accuracy") 

      plt.legend(loc='best') 

      plt.show() 

 

      print("Final Training Accuracy: {}".format(train_acc[-1])) 

      print("Final Validation Accuracy: {}".format(val_acc[-1])) 

train_acc_loader = torch.utils.data.DataLoader(mnist_train, batch_size=100) 

val_acc_loader = torch.utils.data.DataLoader(mnist_val, batch_size=1000) 

 

 

def get_accuracy(model, data): 

correct = 0 



 

  

  total = 0 

  model.eval()  

  for imgs, labels in torch.utils.data.DataLoader(data, batch_size=64): 

   output = model(imgs) 

    pred = output.max(1, keepdim=True)[1] # get the index of the max logit 

     correct += pred.eq(labels.view_as(pred)).sum().item() 

         total += imgs.shape[0] 

     return correct / total 

 

Running the code: 

model = MNISTClassifier() 

train(model, mnist_train, mnist_val, num_iters=500) 

 

 

 

 

 



 

  

RNN Code for Appendix 

 

#Getting data set from tensor flow 

mnist = input_data.read_data_sets("MNIST_data/")  

 

We reshape the data set from based on the parameters we set. we do so TensorFlow assumes that you 

are using one-hot encoding which we are not doing. 

# hyperparameters 

n_neurons = 128 

learning_rate = 0.001 

batch_size = 128 

n_epochs = 10 

 

# parameters 

n_steps = 28 # 28 rows 

n_inputs = 28 # 28 cols 

n_outputs = 10 # 10 classes 

 

# building RNN model 

X = tf.placeholder(tf.float32, [None, n_steps, n_inputs]) 

y = tf.placeholder(tf.int32, [None]) 

 

cell = tf.nn.rnn_cell.BasicRNNCell(num_units=n_neurons) 

output, state = tf.nn.dynamic_rnn(cell, X, dtype=tf.float32) 



 

  

 

logits = tf.layers.dense(state, n_outputs) 

cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits(labels=y, logits=logits) 

 

loss = tf.reduce_mean(cross_entropy) 

optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate).minimize(loss)p 

 

prediction = tf.nn.in_top_k(logits, y, 1) 

accuracy = tf.reduce_mean(tf.cast(prediction, tf.float32)) 

 

 

Reshaping dataset to [num_test, n_steps, n_inputs] 

 

X_test = mnist.test.images # X_test shape: [num_test, 28*28] 

X_test = X_test.reshape([-1, n_steps, n_inputs]) 

y_test = mnist.test.labels 

 

Training the model 

 

# initialize the variables 

init = tf.global_variables_initializer() 

 

 

 



 

  

# training model 

with tf.Session() as sess: 

 

sess.run(init) 

n_batches = mnist.train.num_examples // batch_size 

for epoch in range(n_epochs): 

 for batch in range(n_batches): 

  X_train, y_train = mnist.train.next_batch(batch_size) 

  X_train = X_train.reshape([-1, n_steps, n_inputs]) 

  sess.run(optimizer, feed_dict={X: X_train, y: y_train}) 

loss_train, acc_train = sess.run([loss, accuracy], feed_dict={X: X_train, y: y_train}) 

print('Epoch: {}, Train Loss: {:.3f}, Train Acc: {:.3f}'.format(epoch + 1, loss_train, acc_train)) 

loss_test, acc_test = sess.run([loss, accuracy], feed_dict={X: X_test, y: y_test}) 

print('Test Loss: {:.3f}, Test Acc: {:.3f}'.format(loss_test, acc_test)) 

 

 

Output- 

Test Loss and Test Accuracy 

 



 

  

  

Train Loss Vs Epoch and Train Accuracy vs Epoch 

 

  

 

 

Visualizing prediction made by RNN model 

  

 

 

 

 

 



 

  

 

  


