
ROC Graphs: Notes and Practical Considerations for

Researchers

Tom Fawcett (tom.fawcett@hp.com)
HP Laboratories, MS 1143, 1501 Page Mill Road, Palo Alto, CA 94304

March 16, 2004

Abstract. Receiver Operating Characteristics (ROC) graphs are a useful technique
for organizing classifiers and visualizing their performance. ROC graphs are com-
monly used in medical decision making, and in recent years have been increasingly
adopted in the machine learning and data mining research communities. Although
ROC graphs are apparently simple, there are some common misconceptions and pit-
falls when using them in practice. This article serves both as a tutorial introduction
to ROC graphs and as a practical guide for using them in research.

Keywords: classification, classifier evaluation, ROC, visualization

Introduction

An ROC graph is a technique for visualizing, organizing and selecting
classifiers based on their performance. ROC graphs have long been
used in signal detection theory to depict the tradeoff between hit rates
and false alarm rates of classifiers (Egan, 1975; Swets et al., 2000).
ROC analysis has been extended for use in visualizing and analyzing
the behavior of diagnostic systems (Swets, 1988). The medical deci-
sion making community has an extensive literature on the use of ROC
graphs for diagnostic testing (Zou, 2002). Swets, Dawes and Monahan
(2000) recently brought ROC curves to the attention of the wider public
with their Scientific American article.

One of the earliest adopters of ROC graphs in machine learning
was Spackman (1989), who demonstrated the value of ROC curves
in evaluating and comparing algorithms. Recent years have seen an
increase in the use of ROC graphs in the machine learning community.
In addition to being a generally useful performance graphing method,
they have properties that make them especially useful for domains
with skewed class distribution and unequal classification error costs.
These characteristics have become increasingly important as research
continues into the areas of cost-sensitive learning and learning in the
presence of unbalanced classes.

Most books on data mining and machine learning, if they mention
ROC graphs at all, have only a brief description of the technique.
ROC graphs are conceptually simple, but there are some non-obvious

c© 2004 Kluwer Academic Publishers. Printed in the Netherlands.

ROC101.tex; 16/03/2004; 12:56; p.1

2 Tom Fawcett

complexities that arise when they are used in research. There are also
common misconceptions and pitfalls when using them in practice.

This article attempts to serve as a tutorial introduction to ROC
graphs and as a practical guide for using them in research. It collects
some important observations that are perhaps not obvious to many in
the community. Some of these points have been made in previously
published articles, but they were often buried in text and were sub-
sidiary to the main points. Other notes are the result of information
passed around in email between researchers, but left unpublished. The
goal of this article is to advance general knowledge about ROC graphs
so as to promote better evaluation practices in the field.

This article is divided into two parts. The first part, comprising
sections 1 through 6, covers basic issues that will be encountered in
most research uses of ROC graphs. Each topic has a separate section
and is treated in detail, usually including algorithms. Researchers in-
tending to use ROC curves seriously in their work should be familiar
with this material. The second part, in section 7, covers some related
but ancillary topics. They are more esoteric and are discussed in less
detail, but pointers to further reading are included.

Note: Implementations of the algorithms in this article, in the Perl
language, are collected in an archive available from: http://www.purl.
org/NET/tfawcett/software/ROC_algs.tar.gz

1. Classifier Performance

We begin by considering classification problems using only two classes.
Formally, each instance I is mapped to one element of the set {p,n} of
positive and negative class labels. A classification model (or classifier)
is a mapping from instances to predicted classes. Some classification
models produce a continuous output (e.g., an estimate of an instance’s
class membership probability) to which different thresholds may be
applied to predict class membership. Other models produce a discrete
class label indicating only the predicted class of the instance. To dis-
tinguish between the actual class and the predicted class we use the
labels {Y,N} for the class predictions produced by a model.

Given a classifier and an instance, there are four possible outcomes.
If the instance is positive and it is classified as positive, it is counted
as a true positive; if it is classified as negative, it is counted as a false

negative. If the instance is negative and it is classified as negative, it is
counted as a true negative; if it is classified as positive, it is counted as
a false positive. Given a classifier and a set of instances (the test set),
a two-by-two confusion matrix (also called a contingency table) can be

ROC101.tex; 16/03/2004; 12:56; p.2

ROC graphs 3

Hypothesized
class

Y

N

p n

P NColumn totals:

True class

False
Positives

True
Positives

True
Negatives

False
Negatives

fp rate = FP
N

tp rate = TP
P

precision = TP
TP+FP recall = TP

P

accuracy = TP+TN
P+N F-measure = 2

1/precision+1/recall

Figure 1. Confusion matrix and common performance metrics calculated from it

constructed representing the dispositions of the set of instances. This
matrix forms the basis for many common metrics.

Figure 1 shows a confusion matrix and equations of several common
metrics that can be calculated from it. The numbers along the major
diagonal represent the correct decisions made, and the numbers off
this diagonal represent the errors—the confusion—between the various
classes. The true positive rate1 (also called hit rate and recall) of a
classifier is estimated as:

tp rate ≈
Positives correctly classified

Total positives

1 For clarity, counts such as TP and FP will be denoted with upper-case letters
and rates such as tp rate will be denoted with lower-case.

ROC101.tex; 16/03/2004; 12:56; p.3

4 Tom Fawcett

0 0.2 0.4 0.6 0.8 1.0

0

0.2

0.4

0.6

0.8

1.0

A

B

C

False Positive rate

Tr
ue

 P
os

iti
ve

 ra
te

D

E

Figure 2. A basic ROC graph showing five discrete classifiers.

The false positive rate (also called false alarm rate) of the classi-
fier is:

fp rate ≈
negatives incorrectly classified

total negatives

Additional terms associated with ROC curves are:

sensitivity = recall

specificity =
True negatives

False positives + True negatives

= 1− fp rate

positive predictive value = precision

2. ROC Space

ROC graphs are two-dimensional graphs in which TP rate is plotted
on the Y axis and FP rate is plotted on the X axis. An ROC graph
depicts relative trade-offs between benefits (true positives) and costs
(false positives). Figure 2 shows an ROC graph with five classifiers
labeled A through E.

A discrete classifier is one that outputs only a class label. Each
discrete classifier produces an (fp rate, tp rate) pair corresponding to
a single point in ROC space. The classifiers in figure 2 are all discrete
classifiers.

ROC101.tex; 16/03/2004; 12:56; p.4

ROC graphs 5

Several points in ROC space are important to note. The lower left
point (0, 0) represents the strategy of never issuing a positive classifica-
tion; such a classifier commits no false positive errors but also gains no
true positives. The opposite strategy, of unconditionally issuing positive
classifications, is represented by the upper right point (1, 1).

The point (0, 1) represents perfect classification. D’s performance is
perfect as shown.

Informally, one point in ROC space is better than another if it is
to the northwest (tp rate is higher, fp rate is lower, or both) of the
first. Classifiers appearing on the left hand-side of an ROC graph, near
the X axis, may be thought of as “conservative”: they make positive
classifications only with strong evidence so they make few false positive
errors, but they often have low true positive rates as well. Classifiers
on the upper right-hand side of an ROC graph may be thought of as
“liberal”: they make positive classifications with weak evidence so they
classify nearly all positives correctly, but they often have high false
positive rates. In figure 2, A is more conservative than B. Many real
world domains are dominated by large numbers of negative instances,
so performance in the far left-hand side of the ROC graph becomes
more interesting.

2.1. Random Performance

The diagonal line y = x represents the strategy of randomly guessing
a class. For example, if a classifier randomly guesses the positive class
half the time, it can be expected to get half the positives and half the
negatives correct; this yields the point (0.5, 0.5) in ROC space. If it
guesses the positive class 90% of the time, it can be expected to get
90% of the positives correct but its false positive rate will increase to
90% as well, yielding (0.9, 0.9) in ROC space. Thus a random classifier
will produce a ROC point that “slides” back and forth on the diagonal
based on the frequency with which it guesses the positive class. In
order to get away from this diagonal into the upper triangular region,
the classifier must exploit some information in the data. In figure 2,
C’s performance is virtually random. At (0.7, 0.7), C may be said to be
guessing the positive class 70% of the time,

Any classifier that appears in the lower right triangle performs worse
than random guessing. This triangle is therefore usually empty in ROC
graphs. However, note that the decision space is symmetrical about the
diagonal separating the two triangles. If we negate a classifier—that is,
reverse its classification decisions on every instance—its true positive
classifications become false negative mistakes, and its false positives
become true negatives. Therefore, any classifier that produces a point

ROC101.tex; 16/03/2004; 12:56; p.5

6 Tom Fawcett

in the lower right triangle can be negated to produce a point in the
upper left triangle. In figure 2, E performs much worse than random,
and is in fact the negation of B. Any classifier on the diagonal may
be said to have no information about the class. A classifier below the
diagonal may be said to have useful information, but it is applying the
information incorrectly (Flach and Wu, 2003).

Given an ROC graph in which a classifier’s performance appears
to be slightly better than random, it is natural to ask: “is this classi-
fier’s performance truly significant or is it only better than random by
chance?” There is no conclusive test for this, but Forman (2002) has
shown a methodology that addresses this question with ROC curves.

3. Curves in ROC space

Many classifiers, such as decision trees or rule sets, are designed to pro-
duce only a class decision, i.e., a Y or N on each instance. When such
a discrete classifier is applied to a test set, it yields a single confusion
matrix, which in turn corresponds to one ROC point. Thus, a discrete
classifier produces only a single point in ROC space.

Some classifiers, such as a Naive Bayes classifier or a neural network,
naturally yield an instance probability or score, a numeric value that
represents the degree to which an instance is a member of a class. These
values can be strict probabilities, in which case they adhere to standard
theorems of probability; or they can be general, uncalibrated scores, in
which case the only property that holds is that a higher score indicates
a higher probability. We shall call both a probabilistic classifier, in spite
of the fact that the output may not be a proper probability2.

Such a ranking or scoring classifier can be used with a threshold to
produce a discrete (binary) classifier: if the classifier output is above the
threshold, the classifier produces a Y, else a N. Each threshold value
produces a different point in ROC space. Conceptually, we may imagine
varying a threshold from −∞ to +∞ and tracing a curve through ROC
space. Algorithm 1 describes this basic idea. Computationally, this is a
poor way of generating an ROC curve, and the next section describes
a more efficient and careful method.

Figure 3 shows an example of an ROC “curve” on a test set of twenty
instances. The instances, ten positive and ten negative, are shown in
the table beside the graph. Any ROC curve generated from a finite set
of instances is actually a step function, which approaches a true curve
as the number of instances approaches infinity. The step function in

2 Techniques exist for converting an uncalibrated score into a proper probability
but this conversion is unnecesary for ROC curves.

ROC101.tex; 16/03/2004; 12:56; p.6

ROC graphs 7

Infinity

.9

.8 .7

.6

.55

.54 .53 .52

.51 .505

.4 .39

.38 .37 .36 .35

.34 .33

.30 .1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

False positive rate
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

T
ru

e
po

si
tiv

e
ra

te

Inst# Class Score Inst# Class Score

1 p .9 11 p .4

2 p .8 12 n .39

3 n .7 13 p .38

4 p .6 14 n .37

5 p .55 15 n .36

6 p .54 16 n .35

7 n .53 17 p .34

8 n .52 18 n .33

9 p .51 19 p .30

10 n .505 20 n .1

Figure 3. The ROC “curve” created by thresholding a test set. The table at right
shows twenty data and the score assigned to each by a scoring classifier. The graph
at left shows the corresponding ROC curve with each point labeled by the threshold
that produces it.

figure 3 is taken from a very small instance set so that each point’s
derivation can be understood. In the table of figure 3, the instances are
sorted by their scores, and each point in the ROC graph is labeled by
the score threshold that produces it. A threshold of +∞ produces the
point (0, 0). As we lower the threshold to 0.9 the first positive instance is
classified positive, yielding (0, 0.1). As the threshold is further reduced,
the curve climbs up and to the right, ending up at (1, 1) with a threshold

ROC101.tex; 16/03/2004; 12:56; p.7

8 Tom Fawcett

Algorithm 1 Conceptual method for calculating an ROC curve. See
algorithm 2 for a practical method.

Inputs: L, the set of test instances; f(i), the probabilistic classifier’s es-
timate that instance i is positive; min and max, the smallest and largest
values returned by f ; increment, the smallest difference between any two f
values.

1: for t = min to max by increment do
2: FP ← 0
3: TP ← 0
4: for i ∈ L do
5: if f(i) ≥ t then /* This example is over threshold */
6: if i is a positive example then
7: TP ← TP + 1
8: else /* i is a negative example, so this is a false positive */
9: FP ← FP + 1

10: end if
11: end if
12: end for
13: Add point (FP

N
, TP

P
) to ROC curve

14: end for
15: end

of 0.1. Note that lowering this threshold corresponds to moving from
the “conservative” to the “liberal” areas of the graph.

Although the test set is very small, we can make some tentative
observations about the classifier. It appears to perform better in the
more conservative region of the graph; the ROC point at (0.1, 0.5)
produces its highest accuracy (70%). This is equivalent to saying that
the classifier is better at identifying likely positives than at identifying
likely negatives. Note also that the classifier’s best accuracy occurs at
a threshold of ≥ .54, rather than at ≥ .5 as we might expect with a
balanced distribution. The next section discusses this phenomenon.

3.1. Relative versus absolute scores

An important point about ROC graphs is that they measure the ability
of a classifier to produce good relative instance scores. A classifier need
not produce accurate, calibrated probability estimates; it need only
produce relative accurate scores that serve to discriminate positive and
negative instances.

Consider the simple instance scores shown in figure 4, which came
from a Naive Bayes classifier. Comparing the hypothesized class (which
is Y if score> 0.5, else N) against the true classes, we can see that
the classifier gets instances 7 and 8 wrong, yielding 80% accuracy.

ROC101.tex; 16/03/2004; 12:56; p.8

ROC graphs 9

0 0.2 0.4 0.6 0.8 1
False positive rate

0

0.2

0.4

0.6

0.8

1

T
ru

e
po

si
tiv

e
ra

te Accuracy point (threshold = 0.5)

Accuracy point (threshold = 0.6)

Inst Class Score

no. True Hyp

1 p Y 0.99999

2 p Y 0.99999

3 p Y 0.99993

4 p Y 0.99986

5 p Y 0.99964

6 p Y 0.99955

7 n Y 0.68139

8 n Y 0.50961

9 n N 0.48880

10 n N 0.44951

Figure 4. Scores and classifications of ten instances, and the resulting ROC curve.

However, consider the ROC curve on the left side of the figure. The
curve rises vertically from (0, 0) to (0, 1), then horizontally to (1, 1).
This indicates perfect classification performance on this test set. Why
is there a discrepancy?

The explanation lies in what each is measuring. The ROC curve
shows the ability of the classifier to rank the positive instances relative
to the negative instances, and it is indeed perfect in this ability. The
accuracy metric imposes a threshold (score> 0.5) and measures the re-
sulting classifications with respect to the scores. The accuracy measure
would be appropriate if the scores were proper probabilities, but they
are not. Another way of saying this is that the scores are not properly

calibrated, as true probabilities are. In ROC space, the imposition of
a 0.5 threshold results in the performance designated by the circled
“accuracy point” in figure 4. This operating point is suboptimal. We
could use the training set to estimate a prior for p(p) = 6/10 = 0.6
and use this as a threshold, but it would still produce suboptimal
performance (90% accuracy).

One way to eliminate this phenomenon is to calibrate the classifier
scores. There are some methods for doing this (Zadrozny and Elkan,
2001). Another approach is to use an ROC method that chooses operat-
ing points based on their relative performance, and there are methods
for doing this as well (Provost and Fawcett, 1998; Provost and Fawcett,
2001). These latter methods are discussed briefly in section 7.1.

A consequence of relative scoring is that classifier scores should not
be compared across model classes. One model class may be designed

ROC101.tex; 16/03/2004; 12:56; p.9

10 Tom Fawcett

to produce scores in the range [0, 1] while another produces scores
in [−1,+1] or [1, 100]. Comparing model performance at a common
threshold will be meaningless.

3.2. Class skew

ROC curves have an attractive property: they are insensitive to changes
in class distribution. If the proportion of positive to negative instances
changes in a test set, the ROC curves will not change. To see why this
is so, consider the confusion matrix in figure 1. Note that the class
distribution—the proportion of positive to negative instances—is the
relationship of the left (+) column to the right (-) column. Any per-
formance metric that uses values from both columns will be inherently
sensitive to class skews. Metrics such as accuracy, precision, lift and
F score use values from both columns of the confusion matrix. As a
class distribution changes these measures will change as well, even if
the fundamental classifier performance does not. ROC graphs are based
upon tp rate and fp rate, in which each dimension is a strict columnar
ratio, so do not depend on class distributions.

To some researchers, large class skews and large changes in class
distributions may seem contrived and unrealistic. However, class skews
of 101 and 102 are very common in real world domains, and skews up
to 106 have been observed in some domains (Clearwater and Stern,
1991; Fawcett and Provost, 1996; Kubat et al., 1998; Saitta and Neri,
1998). Substantial changes in class distributions are not unrealistic
either. For example, in medical decision making epidemics may cause
the incidence of a disease to increase over time. In fraud detection,
proportions of fraud varied significantly from month to month and
place to place (Fawcett and Provost, 1997). Changes in a manufacturing
practice may cause the proportion of defective units produced by a
manufacturing line to increase or decrease. In each of these examples
the prevalance of a class may change drastically without altering the
fundamental characteristic of the class, i.e., the target concept.

Precision and recall are common in information retrieval for evalu-
ating retrieval (classification) performance (Lewis, 1990; Lewis, 1991).
Precision-recall graphs are commonly used where static document sets
can sometimes be assumed; however, they are also used in dynamic
environments such as web page retrieval, where the number of pages
irrelevant to a query (N) is many orders of magnitude greater than P
and probably increases steadily over time as web pages are created.

To see the effect of class skew, consider the curves in figure 5, which
show two classifiers evaluated using ROC curves and precision-recall
curves. In 5a and b, the test set has a balanced 1:1 class distribution.

ROC101.tex; 16/03/2004; 12:56; p.10

ROC graphs 11

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

’insts.roc.+’
’insts2.roc.+’

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

’insts.precall.+’
’insts2.precall.+’

(a) ROC curves, 1:1 (b) Precision-recall curves, 1:1

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

’instsx10.roc.+’
’insts2x10.roc.+’

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

’instsx10.precall.+’
’insts2x10.precall.+’

(c) ROC curves, 1:10 (d) Precision-recall curves, 1:10

Figure 5. ROC and precision-recall curves under class skew.

Graphs 5c and d show the same two classifiers on the same domain,
but the number of negative instances has been increased ten-fold. Note
that the classifiers and the underlying concept has not changed; only
the class distribution is different. Observe that the ROC graphs in 5a
and 5c are identical, while the precision-recall graphs in 5b and 5d
differ dramatically. In some cases, the conclusion of which classifier has
superior performance can change with a shifted distribution.

3.3. Creating scoring classifiers

Many classifier models are discrete: they are designed to produce only a
class label from each test instance. However, we often want to generate

ROC101.tex; 16/03/2004; 12:56; p.11

12 Tom Fawcett

a full ROC curve from a classifier instead of just a single point. To this
end we want to generate scores from a classifier rather than just a class
label. There are several ways of producing such scores.

Many discrete classifier models may easily be converted to scoring
classifiers by “looking inside” them at the instance statistics they keep.
For example, a decision tree determines a class label of a leaf node from
the proportion of instances at the node; the class decision is simply
the most prevalent class. These class proportions may serve as a score
(Provost and Domingos, 2001). Appendix A gives a basic algorithm for
generating an ROC curve directly from a decision tree. A rule learner
keeps similar statistics on rule confidence, and the confidence of a rule
matching an instance can be used as a score (Fawcett, 2001).

Even if a classifier only produces a class label, an aggregation of
them may be used to generate a score. MetaCost (Domingos, 1999)
employs bagging to generate an ensemble of discrete classifiers, each of
which produces a vote. The set of votes could be used to generate a
score3.

Finally, some combination of scoring and voting can be employed.
For example, rules can provide basic probability estimates, which may
then be used in weighted voting (Fawcett, 2001).

4. Efficient generation of ROC curves

Given a test set, we often want to generate an ROC curve efficiently
from it. Although some researchers have employed methods like al-
gorithm 1, this method is neither efficient nor practical: it requires
knowing max, min and increment, which must be estimated from the
test set and f values. It involves two nested loops; because the outer
loop must increment t at least n times, the complexity is O(n2) in the
number of test set instances.

A much better algorithm can be created by exploiting the mono-
tonicity of thresholded classifications: any instance that is classified
positive with respect to a given threshold will be classified positive
for all lower thresholds as well. Therefore, we can simply sort the test
instances decreasing by f scores and move down the list, processing
one instance at a time and updating TP and FP as we go. In this way
an ROC graph can be created from a linear scan.

3 MetaCost actually works in the opposite direction because its goal is to generate
a discrete classifier. It first creates a probabilistic classifier, then applies knowledge
of the error costs and class skews to relabel the instances so as to “optimize” their
classifications. Finally, it learns a specific discrete classifier from this new instance
set. Thus, MetaCost is not a good method for creating a good scoring classifier,
though its bagging method may be.

ROC101.tex; 16/03/2004; 12:56; p.12

ROC graphs 13

Algorithm 2 Efficient method for generating ROC points

Inputs: L, the set of test examples; f(i), the probabilistic classifier’s estimate
that example i is positive; P and N , the number of positive and negative
examples.
Outputs: R, a list of ROC points increasing by fp rate.

Require: P > 0 and N > 0
1: Lsorted ← L sorted decreasing by f scores
2: FP ← TP ← 0
3: R← 〈〉
4: fprev ← −∞
5: i← 1
6: while i ≤ |Lsorted| do
7: if f(i) 6= fprev then
8: push

(

FP
N

, TP
P

)

onto R
9: fprev ← f(i)

10: end if
11: if Lsorted[i] is a positive example then
12: TP ← TP + 1
13: else /* i is a negative example */
14: FP ← FP + 1
15: end if
16: i← i + 1
17: end while
18: push

(

FP
N

, TP
P

)

onto R /* This is (1,1) */
19: end

The new algorithm is shown in algorithm 2. TP and FP both start
at zero. For each positive instance we increment TP and for every
negative instance we increment FP . We maintain a stack R of ROC
points, pushing a new point onto R after each instance is processed.
The final output is the stack R, which will contain points on the ROC
curve.

Let n be the number of points in the test set. This algorithm requires
an O(n log n) sort followed by an O(n) scan down the list, resulting in
O(n log n) total complexity.

4.1. Equally scored instances

Statements 7–10 need some explanation. These are necessary in order
to correctly handle sequences of equally scored instances. Consider the
ROC curve shown in figure 6. Assume we have a test set in which
there is a sequence of instances, four negatives and six positives, all
scored equally by f . The sort in line 1 of algorithm 2 does not impose
any specific ordering on these instances since their f scores are equal.

ROC101.tex; 16/03/2004; 12:56; p.13

14 Tom Fawcett

0 0.2 0.4 0.6 0.8 1.0

0

0.2

0.4

0.6

0.8

1.0

False Positive rate

Tr
ue

 P
os

iti
ve

 ra
te

Optimistic

Pessimistic

Expected

Figure 6. The optimistic, pessimistic and expected ROC segments resulting from a
sequence of ten equally scored instances.

What happens when we create an ROC curve? In one extreme case, all
the positives end up at the beginning of the sequence and we generate
the “optimistic” upper L segment shown in figure 6. In the opposite
extreme, all the negatives end up at the beginning of the sequence
and we get the “pessimistic” lower L shown in figure 6. Any mixed
ordering of the instances will give a different set of step segments
within the rectangle formed by these two extremes. However, the ROC
curve should represent the expected performance of the classifier, which,
lacking any other information, is the average of the pessimistic and
optimistic segments. This average is the diagonal of the rectangle, and
can be created in the ROC curve algorithm by not emitting an ROC
point until all instances of equal f values have been processed. This is
what the fprev variable and the if statement of line 7 accomplish.

Instances that are scored equally may seem unusual but with some
classifier models they are common. For example, if we use instance
counts at nodes in a decision tree to score instances, a large, high-
entropy leaf node may produce many equally scored instances of both
classes. If such instances are not averaged, the resulting ROC curves will
be sensitive to the test set ordering, and different orderings can yield
very misleading curves. This can be especially critical in calculating the
area under an ROC curve, discussed in section 5. Consider a decision
tree containing a leaf node accounting for n positives and m negatives.

ROC101.tex; 16/03/2004; 12:56; p.14

ROC graphs 15

0 0.2 0.4 0.6 0.8 1.0

0

0.2

0.4

0.6

0.8

1.0

False Positive rate

Tr
ue

 P
os

iti
ve

 ra
te

A

B

0 0.2 0.4 0.6 0.8 1.0

0

0.2

0.4

0.6

0.8

1.0

False Positive rate

Tr
ue

 P
os

iti
ve

 ra
te A

B

Figure 7. Two ROC graphs. The graph on the left shows the area under two ROC
curves. The graph on the right shows the area under the curves of a discrete classifier
(A) and a probabilistic classifier (B).

Every instance that is classified to this leaf node will be assigned the
same score. The rectangle of figure 6 will be of size nm

PN
, and if these

instances are not averaged this one leaf may account for errors in ROC
curve area as high as nm

2PN
.

5. Area under an ROC Curve (AUC)

An ROC curve is a two-dimensional depiction of classifier perfor-
mance. To compare classifiers we may want to reduce ROC performance
to a single scalar value representing expected performance. A common
method is to calculate the area under the ROC curve, abbreviated
AUC (Bradley, 1997; Hanley and McNeil, 1982). Since the AUC is a
portion of the area of the unit square, its value will always be between 0
and 1.0. However, because random guessing produces the diagonal line
between (0, 0) and (1, 1), which has an area of 0.5, no realistic classifier
should have an AUC less than 0.5.

The AUC has an important statistical property: the AUC of a
classifier is equivalent to the probability that the classifier will rank
a randomly chosen positive instance higher than a randomly chosen
negative instance. This is equivalent to the Wilcoxon test of ranks
(Hanley and McNeil, 1982). The AUC is also closely related to the
Gini coefficient (Breiman et al., 1984), which is twice the area between
the diagonal and the ROC curve. Hand and Till (2001) point out that
Gini + 1 = 2×AUC.

Figure 7a shows the areas under two ROC curves, A and B. Classifier
B has greater area and therefore better average performance. Figure 7b

ROC101.tex; 16/03/2004; 12:56; p.15

16 Tom Fawcett

Algorithm 3 Calculating the area under an ROC curve

Inputs: L, the set of test examples; f(i), the probabilistic classifier’s estimate
that example i is positive; P and N , the number of positive and negative
examples.
Outputs: A, the area under the ROC curve.

Require: P > 0 and N > 0
1: Lsorted ← L sorted decreasing by f scores
2: FP ← TP ← 0
3: FPprev ← TPprev ← 0
4: A← 0
5: fprev ← −∞
6: i← 1
7: while i ≤ |Lsorted| do
8: if f(i) 6= fprev then
9: A← A + trapezoid area(FP, FPprev , TP, TPprev)

10: fprev ← f(i)
11: FPprev ← FP
12: TPprev ← TP
13: end if
14: if i is a positive example then
15: TP ← TP + 1
16: else /* i is a negative example */
17: FP ← FP + 1
18: end if
19: end while
20: A← A + trap area(1, FPprev , 1, TPprev)
21: A← A/(P ×N) /* scale from P ×N onto the unit square */
22: end

1: function trapezoid area(X1, X2, Y 1, Y 2)
2: Base← |X1−X2|
3: Heightavg ← (Y 1 + Y 2)/2
4: return Base×Heightavg

5: end function

shows the area under the curve of a binary classifier A and a scoring
classifier B. Classifier A represents the performance of B when B is
used with a single, fixed threshold. Though the performance of the two
is equal at the fixed point (A’s threshold), A’s performance becomes
inferior to B further from this point.

It is possible for a high-AUC classifier to perform worse in a spe-
cific region of ROC space than a low-AUC classifier. Figure 7a shows
an example of this: classifier B is generally better than A except at
FPrate > 0.6 where A has a slight advantage. But in practice the

ROC101.tex; 16/03/2004; 12:56; p.16

ROC graphs 17

AUC performs very well and is often used when a general measure of
predictiveness is desired.

The AUC may be computed easily using a small modification of
algorithm 2, shown in algorithm 3. Instead of collecting ROC points, the
algorithm adds successive areas of trapezoids to A. Finally, it divides
A by the total possible area to scale the value to the unit square.

6. Averaging ROC curves

Although ROC curves may be used to evaluate classifiers, care should
be taken when using them to make conclusions about classifier superi-
ority. Some researchers have assumed that an ROC graph may be used
to select the best classifiers simply by graphing them in ROC space
and seeing which ones dominate. This is misleading; it is analogous to
taking the maximum of a set of accuracy figures from a single test set.
Without a measure of variance we cannot compare the classifiers.

Averaging ROC curves is easy if the original instances are available.
Given test sets T1, T2, · · · , Tn, generated from cross-validation or the
bootstrap method, we can simply merge sort the instances together
by their assigned scores4 into one large test set TM . We then run an
ROC curve generation algorithm such as algorithm 2 on TM and plot
the result. However, the primary reason for using multiple test sets is
to derive a measure of variance, which this simple merging does not
provide. We need a more sophisticated method that samples individual
curves at different points and averages the samples.

ROC space is two-dimensional, and any average is necessarily one-
dimensional. ROC curves can be projected onto a single dimension
and averaged conventionally, but this leads to the question of whether
the projection is appropriate, or more precisely, whether it preserves
characteristics of interest. The answer depends upon the reason for
averaging the curves. This section presents two methods for averaging
ROC curves: vertical and threshold averaging.

Figure 8a shows five ROC curves to be averaged. Each contains a
thousand points and has some concavities. Figure 8b shows the curve
formed by merging the five test sets and computing their combined
ROC curve. Figures 8c and 8d show average curves formed by sampling
the five individual ROC curves. The error bars are 95% confidence
intervals.

4 This assumes that the scores generated by the models are comparable. If
the same learning algorithm is being used, and the training and testing sets are
representative samples of the population, the scores should be comparable.

ROC101.tex; 16/03/2004; 12:56; p.17

18 Tom Fawcett

0 0.2 0.4 0.6 0.8 1
False positive rate

0

0.2

0.4

0.6

0.8

1

T
ru

e
po

si
tiv

e
ra

te

0 0.2 0.4 0.6 0.8 1
False positive rate

0

0.2

0.4

0.6

0.8

1

T
ru

e
po

si
tiv

e
ra

te

(a) ROC curves of five instance sam-
ples

(b) ROC curve formed by merging the
five samples

0 0.2 0.4 0.6 0.8 1
False positive rate

0

0.2

0.4

0.6

0.8

1

T
ru

e
po

si
tiv

e
ra

te

0 0.2 0.4 0.6 0.8 1
False positive rate

0

0.2

0.4

0.6

0.8

1

T
ru

e
po

si
tiv

e
ra

te

(c) The curves of a averaged vertically (d) The curves of a averaged by
threshold

Figure 8. ROC curve averaging

6.1. Vertical averaging

Vertical averaging takes vertical samples of the ROC curves for fixed
FP rates and averages the corresponding TP rates. Such averaging is
appropriate when the FP rate can indeed be fixed by the researcher,
or when a single-dimensional measure of variation is desired. Provost,

ROC101.tex; 16/03/2004; 12:56; p.18

ROC graphs 19

Algorithm 4 Vertical averaging of ROC curves.
Inputs: samples, the number of FP samples; nrocs, the number of ROC
curves to be sampled, ROCS[nrocs], an array of nrocs ROC curves; npts[m],
the number of points in ROC curve m. Each ROC point is a structure of two
members, fpr and tpr.
Output: Array tpravg, containing the vertical averages.

1: s← 1
2: for fprsample = 0 to 1 by 1/samples do
3: tprsum← 0
4: for i = 1 to nrocs do
5: tprsum← tprsum + tpr for fpr(fprsample, ROCS[i], npts[i])
6: end for
7: tpravg[s]← tprsum/i
8: s← s + 1
9: end for

10: end

1: function tpr for fpr(fprsample , ROC, npts)
2: i← 1
3: while i < npts and ROC[i + 1].fpr ≤ fprsample do
4: i← i + 1
5: end while
6: if ROC[i].fpr = fprsample then
7: return ROC[i].tpr
8: else
9: return interpolate(ROC[i], ROC[i + 1], fprsample)

10: end if
11: end function

1: function interpolate(ROCP1, ROCP2, X)
2: slope = (ROCP2.tpr − ROCP1.tpr)/(ROCP2.fpr −ROCP1.fpr)
3: return ROCP1.tpr + slope · (X −ROCP1.fpr)
4: end function

Fawcett and Kohavi (1998) used this method in their work of averaging
ROC curves of a classifier for k-fold cross-validation.

In this method each ROC curve is treated as a function, Ri, such that
tp rate = Ri(fp rate). This is done by choosing the maximum tp rate

for each fp rate and interpolating between points when necessary. The
averaged ROC curve is the function R̂(fp rate) = mean[Ri(fp rate)].

To plot an average ROC curve we can sample from R̂ at points reg-
ularly spaced along the fp rate-axis. Confidence intervals of the mean
of tp rateare computed using the common assumption of a binomial
distribution.

Algorithm 4 computes this vertical average of a set of ROC points.
It leaves the means in the array TPavg.

ROC101.tex; 16/03/2004; 12:56; p.19

20 Tom Fawcett

Several extensions have been left out of this algorithm for clarity.
The algorithm may easily be extended to compute standard deviations
of the samples in order to draw confidence bars. Also, the function
tp for fp may be optimized somwhat. Because it is only called on
monotonically increasing values of FP , it need not scan each ROC
array from the beginning every time; it could keep a record of the last
point seen and initialize i from this array.

Figure 8c shows the vertical average of the five curves in figure 8a.
The vertical bars on the curve show the 95% confidence region of the
ROC mean. For this average curve, the curves were sampled at FP
rates from 0 through 1 by 0.1. It is possible to sample curves much
more finely but the confidence bars may become difficult to read.

6.2. Threshold averaging

Vertical averaging has the advantage that averages are made of
a single dependent variable, the true positive rate, which simplifies
computing confidence intervals. However, Holte (2002) has pointed out
that the independent variable, false positive rate, is often not under the
direct control of the researcher. It may be preferable to average ROC
points using an independent variable whose value can be controlled
directly, such as the threshold on the classifier scores.

Threshold averaging accomplishes this. Instead of sampling points
based on their positions in ROC space, as vertical averaging does,
it samples based on the thresholds that produced these points. The
method must generate a set of thresholds to sample, then for each
threshold it finds the corresponding point of each ROC curve and
averages them.

Algorithm 5 shows the basic method for doing this. It generates an
array T of classifier scores which are sorted from largest to smallest
and used as the set of thresholds. These thresholds are sampled at
fixed intervals determined by samples, the number of samples desired.
For a given threshold, the algorithm selects from each ROC curve the
the point of greatest score less than or equal to the threshold.5 These
points are then averaged separately along their X and Y axes, with the
center point returned in the Avg array.

Figure 8d shows the result of averaging the five curves of 8a by
thresholds. The resulting curve has average points and confidence bars
in the X and Y directions. The bars shown are at the 95% confidence
level.

5 We assume the ROC points have been generated by an algorithm like 2 that
deals correctly with equally scored instances.

ROC101.tex; 16/03/2004; 12:56; p.20

ROC graphs 21

Algorithm 5 Threshold averaging of ROC curves.
Inputs: samples, the number of threshold samples; nrocs, the number of
ROC curves to be sampled; ROCS[nrocs], an array of nrocs ROC curves
sorted by score; npts[m], the number of points in ROC curve m. Each ROC
point is a structure of three members, fpr, tpr and score.
Output: Avg, an array of (X,Y) points constituting the average ROC
curve.

Require: samples > 1
1: initialize array T to contain all scores of all ROC points
2: sort T in descending order
3: s← 1
4: for tidx = 1 to length(T) by int(length(T)/samples) do
5: fprsum← 0
6: tprsum← 0
7: for i = 1 to nrocs do
8: p← roc point at threshold(ROCS[i], npts[i], T [tidx])
9: fprsum← fprsum + p.fpr

10: tprsum← tprsum + p.tpr
11: end for
12: Avg[s]← (fprsum/i , tprsum/i)
13: s← s + 1
14: end for
15: end

1: function roc point at threshold(ROC, npts, thresh)
2: i← 1
3: while i ≤ npts and ROC[i].score > thresh do
4: i← i + 1
5: end while
6: return ROC[i]
7: end function

There are some minor limitations of threshold averaging with re-
spect to vertical averaging. To perform threshold averaging we need
the classifier score assigned to each point. Also, section 3.1 pointed
out that classifier scores should not be compared across model classes.
Because of this, ROC curves averaged from different model classes may
be misleading because the scores may be incommensurate.

Finally, Macskassy and Provost (2004) have investigated different
techniques for generating confidence bands for ROC curves. They inves-
tigate confidence intervals from vertical and threshold averaging, as well
as three methods from the medical field for generating bands (simul-
taneous join confidence regions, Working-Hotelling based bands, and
fixed-width confidence bands). The reader is referred to their paper for

ROC101.tex; 16/03/2004; 12:56; p.21

22 Tom Fawcett

a much more detailed discussion of the techniques, their assumptions,
and empirical studies.

7. Additional Topics

The previous sections are intended to be self-contained and to cover
the basic issues that arise in using ROC curves in machine learning
research. This section discusses additional, slightly more esoteric topics.

7.1. The ROC convex hull

One advantage of ROC graphs is that they enable visualizing and
organizing classifier performance without regard to class distributions
or error costs. This ability becomes very important when investigat-
ing learning with skewed distributions or cost-sensitive learning. A
researcher can graph the performance of a set of classifiers, and that
graph will remain invariant with respect to the operating conditions
(class skew and error costs). As these conditions change, the region of
interest may change, but the graph itself will not.

Provost and Fawcett (1998; 2001) show that a set of operating con-
ditions may be transformed easily into a so-called iso-performance line

in ROC space. Two points in ROC space, (FP1,TP1) and (FP2,TP2),
have the same performance if

TP2 − TP1

FP2 − FP1
=

c(Y,n)p(n)

c(N,p)p(p)
= m

This equation defines the slope of an iso-performance line. All clas-
sifiers corresponding to points on a line of slope m have the same
expected cost. Each set of class and cost distributions defines a family
of iso-performance lines. Lines “more northwest” (having a larger TP -
intercept) are better because they correspond to classifiers with lower
expected cost.

The details are beyond the scope of this article, but more generally
a classifier is potentially optimal if and only if it lies on the convex
hull (Barber et al., 1993) of the set of points in ROC space. We call
the convex hull of the set of points in ROC space the ROC convex hull

(ROCCH) of the corresponding set of classifiers.
This ROCCH formulation has a number of useful implications. Since

only the classifiers on the convex hull are potentially optimal, no others
need be retained. The operating conditions of the classifier may be
translated into an iso-performance line, which in turn may be used to
identify a portion of the ROCCH. As conditions change, the hull itself
does not change; only the portion of interest will.

ROC101.tex; 16/03/2004; 12:56; p.22

ROC graphs 23

fraudulent legitimate

refuse $20 −$20

approve −x 0.02x

fraudulent legitimate

refuse 0 0

approve $20 + x 0.02x + $20

(a) (b)

Figure 9. Matrices for the credit approval domain. (a) original benefit matrix,
(b) transformed cost-benefit matrix

7.2. Example-specific costs

In some domains the cost of a particular kind of error is not constant
throughout the population, but varies by example. Consider a simple
credit card transaction domain used by Elkan (2001) in which the task
is to decide whether to approve or refuse a given transaction. Elkan
describes a benefit matrix for the task, shown in figure 9a. This cost
matrix is justified with the following explanation. A refused fraudulent
transaction has a benefit of $20 because it may prevent future fraud. Re-
fusing a legitimate transaction has a negative benefit because it annoys
a customer. Approving a fraudulent transaction has a negative benefit
proporational to the transaction amount (x). Approving a legitimate
transaction generates a small amount of income proportional to the
transaction amount (0.02x).

ROC graphs have been criticized because of their inability to handle
example-specific costs. In the traditional formulation this is correct
because the axes graph rates that are based on simple counts of TP
and FP examples, which is in turn based on the assumption that all
true positives are equivalent and all false positives are equivalent.

However, with a straightforward transformation we can show how
ROC graphs may be used with example-specific costs. For this domain
we assume that a Y decision corresponds to approving a transaction,
and N means denying it. To use the matrix for an ROC graph we
transform it into a cost-benefit matrix where the costs are relative only
to Y (approve) decisions. First we subtract the first row from both rows
in the matrix. Conceptually this matrix now corresponds to a baseline
situation where all transactions are refused, so all fraud is denied and
all legitimate customers are annoyed. We then negate the approve-
fraudulent cell to turn it into a cost. This yields the cost-benefit matrix
of figure 9b which forms the definition of the cost function c(Y,p, x)
and c(Y,n, x).

In standard ROC graphs the x axis represents the fraction of total
FP mistakes possible. In the example-specific cost formulation it will
represent the fraction of total FP cost possible, so the denominator will

ROC101.tex; 16/03/2004; 12:56; p.23

24 Tom Fawcett

Algorithm 6 Generating ROC points from an dataset with example-
specific costs

Inputs: L, the set of test examples; f(i), the probabilistic classifier’s estimate
that example i is positive; P and N , the number of positive and negative
examples; c(Y, class, i), the cost of judging instance i of class class to be Y.
Outputs: R, a list of ROC points increasing by fp rate.

Require: P > 0 and N > 0
1: for x ∈ L do
2: if x is a positive example then
3: P total ← P total + c(Y,p, x)
4: else
5: N total ← N total + c(Y,n, x)
6: end if
7: end for
8: Lsorted ← L sorted decreasing by f scores
9: FP cost← 0

10: TP benefit← 0
11: R← 〈〉
12: fprev ← −∞
13: i← 1
14: while i ≤ |Lsorted| do
15: if f(i) 6= fprev then

16: push
(

FP cost
N total

, TP benefit

P total

)

onto R

17: fprev ← f(i)
18: end if
19: if Lsorted[i] is a positive example then
20: TP benefit← TP benefit + c(Y,p, Lsorted[i])
21: else /* i is a negative example */
22: FP cost← FP cost + c(Y,n, L sorted[i])
23: end if
24: i← i + 1
25: end while
26: push

(

FP cost
N

, TP benefit
P

)

onto R /* This is (1,1) */

27: end

now be
∑

x∈fraudulent

$20 + x

Similarly the y axis will be the fraction of total TP benefits so its
denominator will be

∑

x∈legitimate

0.02x + $20

ROC101.tex; 16/03/2004; 12:56; p.24

ROC graphs 25

Instead of incrementing TP and FP instance counts, as in algorithm 2,
we increment TP benefit and FP cost by the cost (benefit) of each
negative (positive) instance as it is processed. The ROC points are
the fractions of total benefits and costs, respectively. Conceptually this
transformation corresponds to replicating instances in the instance set
in proportion to their cost, though this transformation has the advan-
tage that no actual replication is performed and non-integer costs are
easily accommodated. The final algorithm is shown in algorithm 6.

It is important to mention two caveats in adopting this transforma-
tion. First, while example costs may vary, ROC analysis requires that
costs always be negative and benefits always be positive. For example,
if we defined c(Y,p, x) = x − $20, with example x values ranging in
[0, 40], this could be violated. Second, incorporating error costs into
the ROC graph in this way introduces an additional assumption. Tra-
ditional ROC graphs assume that the fp rate and tp rate metrics of
the test population will be similar to those of the training population;
in particular that a classifier’s performance on random samples will be
similar. This new formulation adds the assumption that the example
costs will be similar as well; in other words, not only will the classifier
continue to score instances similarly between the training and testing
sets, but the costs and benefits of those instances will be similar between
the sets too.

7.3. Decision problems with more than two classes

Discussions up to this point have dealt with only two classes, and
much of the ROC literature maintains this assumption. ROC analysis
is commonly employed in medical decision making in which two-class
diagnostic problems—presence or absence of an abnormal condition—
are common. The two axes represent tradeoffs between errors (false
positives) and benefits (true positives) that a classifier makes between
two classes. Much of the analysis is straightforward because of the sym-
metry that exists in the two-class problem. The resulting performance
can be graphed in two dimensions, which is easy to visualize.

7.3.1. Multi-class ROC graphs

With more than two classes the situation becomes much more complex
if the entire space is to be managed. With n classes the confusion
matrix becomes an n×n matrix containing the n correct classifications
(the major diagonal entries) and n2−n possible errors (the off-diagonal
entries). Instead of managing trade-offs between TP and FP, we have n
benefits and n2−n errors. With only three classes, the surface becomes
a 32 − 3 = 6-dimensional polytope. Lane (2000) has written a short

ROC101.tex; 16/03/2004; 12:56; p.25

26 Tom Fawcett

paper outlining the issues involved and the prospects for addressing
them. Srinivasan (1999) has shown that the analysis behind the ROC
convex hull extends to multiple classes and multi-dimensional convex
hulls.

One method for handling n classes is to produce n different ROC
graphs, one for each class. Called this the class reference formulation.
Specifically, if C is the set of all classes, ROC graph i plots the clas-
sification performance using class ci as the positive class and all other
classes as the negative class, i.e.,

Pi = ci (1)

Ni =
⋃

j 6=i

cj ∈ C (2)

While this is a convenient formulation, it compromises one of the
attractions of ROC graphs, namely that they are insensitive to class
skew (see section 3.2). Because each Ni comprises the union of n − 1
classes, changes in prevalence within these classes may alter the ci’s
ROC graph. For example, assume that some class ck ∈ N is particularly
easy to identify. A classifier for class ci, i 6= k may exploit some charac-
teristic of ck in order to produce low scores for ck instances. Increasing
the prevalence of ck might alter the performance of the classifier, and
would be tantamount to changing the target concept by increasing the
prevalence of one of its disjuncts. This in turn would alter the ROC
curve. However, with this caveat, this method can work well in practice
and provide reasonable flexibility in evaluation.

7.3.2. Multi-class AUC

The AUC is a measure of the discriminability of a pair of classes. In a
two-class problem, the AUC is a single scalar value, but a multi-class
problem introduces the issue of combining multiple pairwise discrim-
inability values. The reader is referred to Hand and Till’s (2001) article
for an excellent discussion of these issues.

One approach to calculating multi-class AUCs was taken by Provost
and Domingos (2001) in their work on probability estimation trees.
They calculated AUCs for multi-class problems by generating each class
reference ROC curve in turn, measuring the area under the curve, then
summing the AUCs weighted by the reference class’s prevalence in the
data. More precisely, they define:

AUCtotal =
∑

ci∈C

AUC(ci) · p(ci)

ROC101.tex; 16/03/2004; 12:56; p.26

ROC graphs 27

where AUC(ci) is the area under the class reference ROC curve for ci,
as in equations 2. This definition requires only |C| AUC calculations,
so its overall complexity is O(|C|n log n).

The advantage of Provost and Domingos’s AUC formulation is that
AUCtotal is generated directly from class reference ROC curves, and
these curves can be generated and visualized easily. The disadvantage
is that the class reference ROC is sensitive to class distributions and
error costs, so this formulation of AUCtotal is as well.

Hand and Till (2001) take a different approach in their derivation
of a multi-class generalization of the AUC. They desired a measure
that is insensitive to class distribution and error costs. The derivation
is too detailed to summarize here, but it is based upon the fact that
the AUC is equivalent to the probability that the classifier will rank
a randomly chosen positive instance higher than a randomly chosen
negative instance. From this probabilistic form, they derive a formula-
tion that measures the unweighted pairwise discriminability of classes.
Their measure, which they call M, is equivalent to:

AUCtotal =
2

|C|(|C| − 1)

∑

{ci,cj}∈C

AUC(ci, cj)

where n is the number of classes and AUC(ci, cj) is the area under
the two-class ROC curve involving classes ci and cj . The summation is
calculated over all pairs of distinct classes, irrespective of order. There
are |C|(|C| − 1)/2 such pairs, so the time complexity of their measure
is O(|C|2 n log n). While Hand and Till’s formulation is well justified
and is insensitive to changes in class distribution, there is no easy way
to visualize the surface whose area is being calculated.

7.4. Combining classifiers

While ROC curves are commonly used for visualizing and evaluating
individual classifiers, ROC space can also be used to estimate the
performance of combinations of classifiers.

7.4.1. Interpolating classifiers

Sometimes the performance desired of a classifier is not exactly pro-
duced by any available classifier, but lies between two available clas-
sifiers. The desired performance can be obtained by sampling the de-
cisions of each classifier. The sampling ratio will determine where the
resulting classification performance lies.

For a concrete example, consider the decision problem of the CoIL
Challenge 2000 (van der Putten and van Someren, 2000). In this chal-
lenge there is a set of 4000 clients to whom we wish to market a new

ROC101.tex; 16/03/2004; 12:56; p.27

28 Tom Fawcett

0 0.05 0.1 0.15 0.2 0.25

0

0.2

0.4

0.6

0.8

1.0

False Positive rate

Tr
ue

 P
os

iti
ve

 ra
te

A

B

C}
k

0.3

constraint line:
TPr * 240 + FPr * 3760 = 800

Figure 10. Interpolating classifiers

insurance policy. Our budget dictates that we can afford to market to
only 800 of them, so we want to select the 800 who are most likely
to respond to the offer. The expected class prior of responders is 6%,
so within the population of 4000 we expect to have 240 responders
(positives) and 3760 non-responders (negatives).

Assume we have generated two classifiers, A and B, which score
clients by the probability they will buy the policy. In ROC space A
lies at (.1, .2) and B lies at (.25, .6), as shown in figure 10. We want
to market to exactly 800 people so our solution constraint is fp rate×
3760+ tp rate×240 = 800. If we use A we expect .1×3760+ .2×240 =
424 candidates, which is too few. If we use B we expect .25 × 3760 +
.6 × 240 = 1084 candidates, which is too many. We want a classifier
between A and B.

The solution constraint is shown as a dashed line in figure 10. It
intersects the line between A and B at C, approximately (.18, .42). A
classifier at point C would give the performance we desire and we can
achieve it using linear interpolation. Calculate k as the proportional
distance that C lies on the line between A and B:

k =
0.18 − 0.1

0.25 − 0.1
≈ 0.53

Therefore, if we sample B’s decisions at a rate of .53 and A’s decisions
at a rate of 1− .53 = .47 we should attain C’s performance. In practice
this fractional sampling can be done by randomly sampling decisions

ROC101.tex; 16/03/2004; 12:56; p.28

ROC graphs 29

0 0.2 0.4 0.6 0.8 1.0

0

0.2

0.4

0.6

0.8

1.0

False Positive rate

Tr
ue

 P
os

iti
ve

 ra
te

A
B

C

0 0.2 0.4 0.6 0.8 1.0

0

0.2

0.4

0.6

0.8

1.0

False Positive rate

Tr
ue

 P
os

iti
ve

 ra
te

A
B

C

B’

(a) (b)

Figure 11. Removing concavities

from each: for each instance, generate a random number between zero
and one. If the random number is greater than k, apply classifier A to
the instance and report its decision, else pass the instance to B.

7.4.2. Conditional combinations of classifiers to remove concavities

A concavity in an ROC curve represents a sub-optimality in the clas-
sifier. Specifically, a concavity occurs whenever a segment of slope r is
joined at the right to a segment of slope s where s > r. The slope of an
ROC curve represents the class likelihood ratio. A concavity indicates
that the group of instances producing s have a higher posterior class
ratio than those accounting for r. Because s occurs to the right of r,
r’s instances should have been ranked more highly than s’s, but were
not. This is a sub-optimality of the classifier. In practice, concavities
in ROC curves produced by learned classifiers may be due either to
idiosyncracies in learning or to small test set effects.6

Section 2.1 mentioned that the diagonal y = x on an ROC graph
represents a zone of “no information”, where a classifier is randomly
guessing at classifications. Any classifier below the diagonal can have
its classifications reversed to bring it above the diagonal. Flach and
Wu (2003) show that in some cases this can be done locally to remove
concavities in an ROC graph.

Figure 11a shows three classifiers, A, B and C. B introduces a con-
cavity in the ROC graph. The segment BC has higher slope than AB,
so ideally we would want to “swap” the position of segment BC for that

6 Bradley’s (1997) ROC curves exhibit noticeable concavities, as do the Breast
cancer and RoadGrass domains of Provost et al. (1998).

ROC101.tex; 16/03/2004; 12:56; p.29

30 Tom Fawcett

of AB in the ROC graph. If A, B and C are related—for example, if
they represent different thresholds applied to the same scoring model—
then this can be done. Let A(x) represent the classification assigned to
instance x by classifier A. Flach and Wu’s method involves creating a
new classifier B́ defined as:

B́(x) =

N if A(x) = N ∧ C(x) = N
Y if A(x) = Y ∧C(x) = Y

¬B(x) if A(x) = N ∧ C(x) = Y

Figure 11b shows the new classifier B́. Its position is equivalent to
reflecting B’s about the line AC or, equivalently, transposing the deci-
sions in AB with those in BC. Flach and Wu (2003) demonstrate this
construction in greater detail and prove its performance formally.

An important caveat is that A, B and C must be dependent. Specifi-
cally, it must be the case that TPA ⊆ TPB ⊆ TPC and FPA ⊆ FPB ⊆
FPC . This is commonly achieved when A, B and C are the results
of imposing a threshold T on a single model and TA < TB < TC .
Because of these relationships, there need be no fourth clause covering
A(x) = N∧C(x) = Y in the definition of B́ since these conditions are
contradictory.

7.4.3. Logically combining classifiers

As we have seen, with two classes a classifier c can be viewed as a
predicate on an instance x where c(x) is true iff c(x) = Y. We can
then speak of boolean combinations of classifiers, and an ROC graph
can provide a way of visualizing the performance of such combinations.
It can help to illustrate both the bounding region of the new classifier
and its expected position.

If two classifiers c1 and c2 are conjoined to create c3 = c1 ∧ c2,
where will c3 lie in ROC space? Let TPrate3 and FPrate3 be the ROC
positions of c3. The minimum number of instances c3 can match is zero.
The maximum is limited by the intersection of their positive sets. Since
a new instance must satisfy both c1 and c2, we can bound c3’s position:

0 ≤ TPrate3 ≤ min(TPrate1,TPrate2)

0 ≤ TPrate3 ≤ min(FPrate1,FPrate2)

Figure 12 shows this bounding rectangle for two classifiers c1∧c2, the
shaded rectangle in the lower left corner. Where within this rectangle
do we expect c3 to lie? Let x be an instance in the true positive set
TP3 of c3. Then:

TPrate3 ≈ p(x ∈ TP3)

≈ p(x ∈ TP1 ∧ x ∈ TP2)

ROC101.tex; 16/03/2004; 12:56; p.30

ROC graphs 31

0 0.2 0.4 0.6 0.8 1.0

0

0.2

0.4

0.6

0.8

1.0

False Positive rate

Tr
ue

 P
os

iti
ve

 ra
te

c1

c2

c1 ^ c2

+
c1Vc2

Figure 12. The expected positions of boolean combinations of c1 and c2.

By assuming independence of c1 and c2, we can continue:

TPrate3 ≈ p(x ∈ TP1) · p(x ∈ TP2)

≈
| TP1 |

| P |
·
| TP2 |

| P |

≈ TPrate1 · TPrate2

A similar derivation can be done for FPrate3, showing that FPrate3 ≈
FPrate1 · FPrate2. Thus, the conjunction of two classifiers c1 and c2

can be expected to lie at the point

(FPrate1 · FPrate2 , TPrate1 · TPrate2)

in ROC space. This point is shown as the triangle in figure 12 at
(0.08, 0.42). This estimate assumes independence of classifiers; inter-
actions between c1 and c2 may cause the position of c3 in ROC space
to vary from this estimate.

We can derive similar expressions for the disjunction c4 = c1 ∨ c2.
In this case the rates are bounded by:

max(TPrate1,TPrate2) ≤ TPrate4 ≤ min(1,TPrate1 + TPrate2)

max(FPrate1,FPrate2) ≤ FPrate4 ≤ min(1,FPrate1 + FPrate2)

ROC101.tex; 16/03/2004; 12:56; p.31

32 Tom Fawcett

This bounding region is indicated in figure 12 by the shaded rectangle
in the upper right portion of the ROC graph. The expected position,
assuming independence, is:

TPrate4 = 1− [1−TPrate1 − TPrate2 + TPrate1 · TPrate2]

FPrate4 = 1− [1− FPrate1 − FPrate2 + FPrate1 · FPrate2]

This point is indicted by the marked + symbol within the bounding
rectangle.

It is worth noting that the expected location of both c1∧c2 and c1∨c2

are outside of the ROC convex hull formed by c1 and c2. In other words,
logical combinations of classifiers can produce performance outside of
the convex hull and better than what could be achieved with linear
interpolation.

7.4.4. Chaining classifiers

Section 2 mentioned that classifiers on the left side of an ROC graph
near X = 0 may be thought of as “conservative”; and classifiers on
the upper side of an ROC graph near Y = 1 may be thought of as
“liberal”. With this interpretation it might be tempting to devise a
composite scheme that applies classifiers sequentially like a rule list.
Such a technique might work as follows: Given the classifiers on the
ROC convex hull, an instance is first given to the most conservative
(left-most) classifier. If that classifier returns Y, the composite classifier
returns Y; otherwise, the second most conservative classifier is tested,
and so on. The sequence terminates when some classifier issues a Y
classification, or when the classifiers reach a maximum expected cost,
such as may be specified by an iso-performance line. The resulting
classifier is c1 ∨ c2 ∨ · · · ∨ ck, where ck has the highest expected cost
tolerable.

Unfortunately, this chaining of classifiers may not work as desired.
Classifiers’ positions in ROC space are based upon their independent

performance. When classifiers are applied in sequence this way, they
are not being used independently but are instead being applied to
instances which more conservative classifiers have already classified as
negative. Due to classifier interactions (intersections among classifiers’
TP and FP sets), the resulting classifier may have very different perfor-
mance characteristics than any of the component classifiers. Although
section 7.4.3 introduced an independence assumption that may be rea-
sonable for combining two classifiers, this assumption becomes much
less tenable as longer chains of classifiers are constructed.

ROC101.tex; 16/03/2004; 12:56; p.32

ROC graphs 33

7.4.5. The importance of final validation

To close this section on classifier combination, we emphasize a basic
point that is easy to forget. ROC graphs are commonly used in evalua-
tion, and are generated from a final test set. If an ROC graph is instead
used to select or to combine classifiers, this use must be considered to
be part of the training phase. A separate held-out validation set must
be used to estimate the expected performance of the classifier(s). This
is true even if the ROC curves are being used to form a convex hull.

7.5. Alternatives to ROC graphs

Recently, various alternatives to ROC graphs have been proposed. We
briefly summarize them here.

7.5.1. DET curves

DET graphs (Martin et al., 1997) are not so much an alternative to
ROC curves as an alternative way of presenting them. There are two
differences. First, DET graphs plot false negatives on the Y axis instead
of true positives, so they plot one kind of error against another. Second,
DET graphs are log scaled on both axes so that the area of the lower
left part of the curve (which corresponds to the upper left portion
of an ROC graph) is expanded. Martin et al. (1997) argue that well-
performing classifiers, with low false positive rates and/or low false
negative rates, tend to be “bunched up” together in the lower left
portion of a ROC graph. The log scaling of a DET graph gives this
region greater surface area and allows these classifiers to be compared
more easily.

7.5.2. Cost curves

Section 7.1 showed how information about class proportions and er-
ror costs could be combined to define the slope of a so-called iso-
performance line. Such a line can be placed on an ROC curve and
used to identify which classifier(s) perform best under the conditions
of interest. In many cost minimization scenarios, this requires inspect-
ing the curves and judging the tangent angles for which one classifier
dominates.

Drummond and Holte (2000; 2002) point out that reading slope
angles from an ROC curve may be difficult to do. Determining the
regions of superiority, and the amount by which one classifier is superior
to another, is challenging when the comparison lines are curve tangents
rather than simple vertical lines. Drummond and Holte reason that if
the primary use of a curve is to compare relative costs, the graphs
should represent these costs explicitly. They propose cost curves as an
alternative to ROC curves.

ROC101.tex; 16/03/2004; 12:56; p.33

34 Tom Fawcett

On a cost curve, the X axis ranges from 0 to 1 and measures the
proportion of positives in the distribution. The Y axis, also from 0
to 1, is the relative expected misclassification cost. A perfect classifier
is a horizontal line from (0, 0) to (0, 1). Cost curves are a point-line
dual of ROC curves: a point (i.e., a discrete classifier) in ROC space is
represented by a line in cost space, with the line designating the relative
expected cost of the classifier. For any X point, the corresponding Y
points represent the expected costs of the classifiers. Thus, while in
ROC space the convex hull contains the set of lowest-cost classifiers, in
cost space the lower envelope represents this set.

7.5.3. Relative superiority graphs and the LC index

Like cost curves, the LC index (Adams and Hand, 1999) is a trans-
formation of ROC curves that facilitates comparing classifiers by cost.
Adams and Hand argue that precise cost information is rare, but some

information about costs is always available, and so the AUC is too
coarse of a measure of classifier performance. An expert may not be
able to specify exactly what the costs of a false positive and false
negative should be, but an expert usually has some idea how much
more expensive one error is than another. This can be expressed as a
range of values in which the error cost ratio will lie.

Adams and Hand’s method maps the ratio of error costs onto the
interval (0,1). It then transforms a set of ROC curves into a set of
parallel lines showing which classifier dominates at which region in
the interval. An expert provides a sub-range of (0,1) within which the
ratio is expected to fall, as well as a most likely value for the ratio.
This serves to focus attention on the interval of interest. Upon these
“relative superiority” graphs a measure of confidence—the LC index—
can be defined indicating how likely it is that one classifier is superior
to another within this interval.

The relative superiority graphs may be seen as a binary version
of cost curves, in which we are only interested in which classifier is
superior. The LC index (for loss comparison) is thus a measure of
confidence of superiority rather than of cost difference.

8. Conclusion

ROC graphs are a very useful tool for visualizing and evaluating clas-
sifiers. They are able to provide a richer measure of classification per-
formance than accuracy or error rate can, and they have advantages
over other evaluation measures such as precision-recall graphs and lift
curves. However, as with any evaluation metric, using them wisely

ROC101.tex; 16/03/2004; 12:56; p.34

ROC graphs 35

requires knowing their characteristics and limitations. It is hoped that
this article advances the general knowledge about ROC graphs and
helps to promote better evaluation practices in the data mining com-
munity.

Appendix

A. Generating an ROC curve from a decision tree

As a basic example of how scores can be derived from some model
classes, and how a ROC curve can be generated directly from them,
we present a procedure for generating a ROC curve from a decision
tree. Algorithm 7 shows the basic idea. For simplicity the algorithm is
written in terms of descending the tree structure, but it could just as
easily extract the same information from the printed tree representa-
tion. Following C4.5 usage, each leaf node keeps a record of the number
of examples matched by the condition, the number of errors (local false
positives), and the class concluded by the node.

Acknowledgements

While at Bell Atlantic, Foster Provost and I investigated ROC graphs
and ROC analysis for use in real-world domains. My understanding of
ROC analysis has benefited greatly from discussions with him.

I am indebted to Rob Holte and Chris Drummond for many en-
lightening email exchanges on ROC graphs, especially on the topics of
cost curves and averaging ROC curves. These discussions increased my
understanding of the complexity of the issues involved. I wish to thank
Terran Lane, David Hand and José Hernandez-Orallo for discussions
clarifying their work. I wish to thank Kelly Zou and Holly Jimison for
pointers to relevant articles in the medical decision making literature.

I am grateful to the following people for their comments and correc-
tions on previous drafts of this article: Chris Drummond, Peter Flach,
George Forman, Rob Holte, Sofus Macskassy, Sean Mooney, Joshua
O’Madadhain and Foster Provost. Of course, any misunderstandings
or errors remaining are my own responsibility.

Much open source software was used in this work. I wish to thank
the authors and maintainers of XEmacs, TEXand LATEX, Perl and its
many user-contributed packages, and the Free Software Foundation’s
GNU Project. The figures in this paper were created with Tgif, Grace
and Gnuplot.

ROC101.tex; 16/03/2004; 12:56; p.35

36 Tom Fawcett

References

Adams, N. M. and D. J. Hand: 1999, ‘Comparing classifiers when the misallocations
costs are uncertain’. Pattern Recognition 32, 1139–1147.

Barber, C., D. Dobkin, and H. Huhdanpaa: 1993, ‘The quickhull algorithm for convex
hull’. Technical Report GCG53, University of Minnesota. Available: ftp://

geom.umn.edu/pub/software/qhull.tar.Z.
Bradley, A. P.: 1997, ‘The use of the area under the ROC curve in the evaluation of

machine learning algorithms’. Pattern Recognition 30(7), 1145–1159.
Breiman, L., J. Friedman, R. Olshen, and C. Stone: 1984, Classification and

regression trees. Belmont, CA: Wadsworth International Group.
Clearwater, S. and E. Stern: 1991, ‘A rule-learning program in high energy physics

event classification’. Comp Physics Comm 67, 159–182.
Domingos, P.: 1999, ‘MetaCost: A general method for making classifiers cost-

sensitive’. In: Proceedings of the Fifth ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining. pp. 155–164.

Drummond, C. and R. C. Holte: 2000, ‘Explicitly Representing Expected Cost: An
alternative to ROC representation’. In: R. Ramakrishnan and S. Stolfo (eds.):
Proceedings of the Sixth ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining. pp. 198–207, ACM Press.

Drummond, C. and R. C. Holte: 2002, ‘Classifier cost curves: Making performance
evaluation easier and more informative’. Unpublished manuscript available from
the authors.

Egan, J. P.: 1975, Signal Detection Theory and ROC Analysis, Series in Cognitition
and Perception. New York: Academic Press.

Elkan, C.: 2001, ‘The Foundations of Cost-Sensitive Learning’. In: Proceedings of
the IJCAI-01. pp. 973–978.

Fawcett, T.: 2001, ‘Using Rule Sets to Maximize ROC Performance’. In: Proceed-
ings of the IEEE International Conference on Data Mining (ICDM-2001). Los
Alamitos, CA, pp. 131–138, IEEE Computer Society.

Fawcett, T. and F. Provost: 1996, ‘Combining Data Mining and Machine Learning
for Effective User Profiling’. In: Simoudis, Han, and Fayyad (eds.): Proceedings on
the Second International Conference on Knowledge Discovery and Data Mining.
Menlo Park, CA, pp. 8–13, AAAI Press.

Fawcett, T. and F. Provost: 1997, ‘Adaptive Fraud Detection’. Data Mining and
Knowledge Discovery 1(3), 291–316.

Flach, P. and S. Wu: 2003, ‘Repairing concavities in ROC curves’. In: Proc. 2003
UK Workshop on Computational Intelligence. pp. 38–44.

Forman, G.: 2002, ‘A method for discovering the insignificance of one’s best clas-
sifier and the unlearnability of a classification task’. In: Lavrac, Motoda, and
Fawcett (eds.): Proceedings of th First International Workshop on Data Mining
Lessons Learned (DMLL-2002). Available: http://www.hpl.hp.com/personal/
Tom_Fawcett/DMLL-2002/Forman.pdf.

Hand, D. J. and R. J. Till: 2001, ‘A simple generalization of the area under the
ROC curve to multiple class classification problems’. Machine Learning 45(2),
171–186.

Hanley, J. A. and B. J. McNeil: 1982, ‘The Meaning and Use of the Area under a
Receiver Operating Characteristic (ROC) Curve’. Radiology 143, 29–36.

Holte, R.: 2002, ‘Personal communication’.
Kubat, M., R. C. Holte, and S. Matwin: 1998, ‘Machine Learning for the Detection

of Oil Spills in Satellite Radar Images’. Machine Learning 30, 195–215.

ROC101.tex; 16/03/2004; 12:56; p.36

ROC graphs 37

Lane, T.: 2000, ‘Extensions of ROC Analysis to multi-class domains’. In: T. Diet-
terich, D. Margineantu, F. Provost, and P. Turney (eds.): ICML-2000 Workshop
on Cost-Sensitive Learning.

Lewis, D.: 1990, ‘Representation quality in text classification: An introduction and
experiment’. In: Proceedings of Workshop on Speech and Natural Language.
Hidden Valley, PA, pp. 288–295, Morgan Kaufmann.

Lewis, D.: 1991, ‘Evaluating Text Categorization’. In: Proceedings of Speech and
Natural Language Workshop. pp. 312–318, Morgan Kaufmann.

Macskassy, S. A. and F. Provost: 2004, ‘Confidence Bands for ROC curves’. In:
Submitted to ICML-2004.

Martin, A., G. Doddington, T. Kamm, M. Ordowski, and M. Przybocki: 1997, ‘The
DET Curve in Assessment of Detection Task Performance’. In: Proc. Eurospeech
’97. Rhodes, Greece, pp. 1895–1898.

Provost, F. and P. Domingos: 2001, ‘Well-trained PETs: Improving Probability
Estimation Trees’. CeDER Working Paper #IS-00-04, Stern School of Business,
New York University, NY, NY 10012.

Provost, F. and T. Fawcett: 1998, ‘Robust classification systems for imprecise
environments’. In: Proceedings of the Fifteenth National Conference on Arti-
ficial Intelligence (AAAI-98). Menlo Park, CA, pp. 706–713. Available: http:
//www.purl.org/NET/tfawcett/papers/aaai98-dist.ps.gz.

Provost, F. and T. Fawcett: 2001, ‘Robust Classification for Imprecise Environ-
ments’. Machine Learning 42(3), 203–231.

Provost, F., T. Fawcett, and R. Kohavi: 1998, ‘The Case Against Accuracy Esti-
mation for Comparing Induction Algorithms’. In: J. Shavlik (ed.): Proceedings
of the Fifteenth International Conference on Machine Learning. San Francisco,
CA, pp. 445–453.

Saitta, L. and F. Neri: 1998, ‘Learning in the “Real World”’. Machine Learning 30,
133–163.

Spackman, K. A.: 1989, ‘Signal detection theory: Valuable tools for evaluating induc-
tive learning’. In: Proceedings of the Sixth International Workshop on Machine
Learning. San Mateo, CA, pp. 160–163, Morgan Kaufman.

Srinivasan, A.: 1999, ‘Note on the location of optimal classifiers in n-dimensional
ROC space’. Technical Report PRG-TR-2-99, Oxford University Computing
Laboratory, Oxford, England.

Swets, J.: 1988, ‘Measuring the accuracy of diagnostic systems’. Science 240, 1285–
1293.

Swets, J. A., R. M. Dawes, and J. Monahan: 2000, ‘Better Decisions
through Science’. Scientific American 283, 82–87. Available: http:

//www.psychologicalscience.org/newsresearch/publications/journals/

%siam.pdf.
van der Putten, P. and M. van Someren: 2000, ‘CoIL Challenge 2000: The Insurance

Company Case’. Tech report 2000-09, Leiden Institute of Advanced Computer
Science.

Zadrozny, B. and C. Elkan: 2001, ‘Obtaining calibrated probability estimates from
decision trees and naive bayesian classiers’. In: Proceedings of the Eighteenth
International Conference on Machine Learning. pp. 609–616.

Zou, K. H.: 2002, ‘Receiver operating characteristic (ROC) literature research’. On-
line bibliography available from http://splweb.bwh.harvard.edu:8000/pages/

ppl/zou/roc.html.

ROC101.tex; 16/03/2004; 12:56; p.37

38 Tom Fawcett

Algorithm 7 Generating an ROC curve from a decision tree
Inputs: pos class and neg class, the positive and negative classes; and T , the
decision tree root node. Each tree node has fields class, the class concluded
by the node; matched, the number of instances matched by the condition; and
errors, the number of non-class instances matched by the condition. If a node
is not a leaf node it also has children, an array of pointers to its children, and
n children, the number of children.
Outputs: R, a list of ROC points.

1: pos points← (); neg points← ()
2: count[pos class]← 0; count[neg class]← 0
3: descend(T, pos class);
4: for pt ∈ pos points do
5: pt.x← pt.x/count[neg class]
6: pt.y ← pt.y/count[pos class]
7: end for
8: for pt ∈ neg points do
9: pt.x← (count[neg class]− pt.x)/count[neg class]

10: pt.y ← (count[pos class]− pt.y)/count[pos class]
11: end for
12: R← pos points ∪ neg points ∪ (0, 0) ∪ (1, 1)
13: sort R increasing by x values
14: end

1: function descend(node, pos class)
2: if node is a leaf node then
3: TP ← node.matched− node.errors
4: FP ← node.errors
5: count[node.class]← count[node.class] + TP
6: pt← new point
7: if node.class = pos class then
8: pt.x← FP ; pt.y ← TP
9: push pt onto pos points

10: else
11: pt.x← TP ; pt.y ← FP
12: push pt onto neg points
13: end if
14: else /* node is an internal node */
15: for i = 1 to node.n children do
16: descend(node.children[i], pos class)
17: end for
18: end if
19: end function

ROC101.tex; 16/03/2004; 12:56; p.38

