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1 M-Estimation

Linear least-squares estimates can behave badly when the error distribution is not normal, particularly when
the errors are heavy-tailed. One remedy is to remove influential observations from the least-squares fit (see
Chapter 6, Section 6.1, in the text). Another approach, termed robust regression, is to employ a fitting
criterion that is not as vulnerable as least squares to unusual data.

The most common general method of robust regression is M-estimation, introduced by Huber (1964).1

Consider the linear model

yi = α+ β1xi1 + β2xi2 + · · ·+ βkxik + εi

= x′

iβ + εi

for the ith of n observations. The fitted model is

yi = a+ b1xi1 + b2xi2 + · · ·+ bkxik + ei

= x′

ib+ ei

The general M-estimator minimizes the objective function

n∑
i=1

ρ(ei) =
n∑

i=1

ρ(yi − x′

ib)

where the function ρ gives the contribution of each residual to the objective function. A reasonable ρ should
have the following properties:

• ρ(e) ≥ 0

• ρ(0) = 0

• ρ(e) = ρ(−e)

• ρ(ei) ≥ ρ(ei′) for |ei| > |ei′ |

For example, for least-squares estimation, ρ(ei) = e2
i
.

Let ψ = ρ′ be the derivative of ρ. Differentiating the objective function with respect to the coefficients, b,
and setting the partial derivatives to 0, produces a system of k+1 estimating equations for the coefficients:

n∑
i=1

ψ(yi − x′

ib)x
′

i
= 0

1This class of estimators can be regarded as a generalization of maximum-likelihood estimation, hence the term ‘M ’-
estimation. Huber’s 1964 paper introduced M-estimation in the context of estimating the ‘location’ (center) of a distribution;
the method was later generalized to regression.
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Define the weight function w(e) = ψ(e)/e, and let wi = w(ei). Then the estimating equations may be written
as

n∑
i=1

wi(yi − x′

i
b)x′

i
= 0

Solving the estimating equations is a weighted least-squares problem, minimizing
∑

w2
i
e2
i
. The weights,

however, depend upon the residuals, the residuals depend upon the estimated coefficients, and the estimated
coefficients depend upon the weights. An iterative solution (called iteratively reweighted least-squares, IRLS )
is therefore required:

1. Select initial estimates b(0), such as the least-squares estimates.

2. At each iteration t, calculate residuals e
(t−1)
i

and associated weights w
(t−1)
i

= w
[
e
(t−1)
i

]
from the

previous iteration.

3. Solve for new weighted-least-squares estimates

b(t) =
[
X′W(t−1)X

]
−1

X′W(t−1)y

where X is the model matrix, with x′

i
as its ith row, and W(t−1) = diag

{
w

(t−1)
i

}
is the current weight

matrix.

Steps 2. and 3. are repeated until the estimated coefficients converge.
The asymptotic covariance matrix of b is

V(b) =
E(ψ2)

[E(ψ′)]2
(X′X)−1

Using
∑

[ψ(ei)]
2 to estimate E(ψ2), and

[∑
ψ′(ei)/n

]2
to estimate [E(ψ′)]2 produces the estimated asymp-

totic covariance matrix, V̂(b) (which is not reliable in small samples).

1.1 Objective Functions

Figure 1 compares the objective functions, and the corresponding ψ and weight functions for three M-
estimators: the familiar least-squares estimator; the Huber estimator; and the Tukey bisquare (or biweight)
estimator. The objective and weight functions for the three estimators are also given in Table 1.

Both the least-squares and Huber objective functions increase without bound as the residual e departs
from 0, but the least-squares objective function increases more rapidly. In contrast, the bisquare objective
function levels eventually levels off (for |e| > k). Least-squares assigns equal weight to each observation; the
weights for the Huber estimator decline when |e| > k; and the weights for the bisquare decline as soon as e
departs from 0, and are 0 for |e| > k.

The value k for the Huber and bisquare estimators is called a tuning constant ; smaller values of k produce
more resistance to outliers, but at the expense of lower efficiency when the errors are normally distributed.
The tuning constant is generally picked to give reasonably high efficiency in the normal case; in particular,
k = 1.345σ for the Huber and k = 4.685σ for the bisquare (where σ is the standard deviation of the errors)
produce 95-percent efficiency when the errors are normal, and still offer protection against outliers.

In an application, we need an estimate of the standard deviation of the errors to use these results. Usually
a robust measure of spread is employed in preference to the standard deviation of the residuals. For example,
a common approach is to take σ̂ = MAR/0.6745, where MAR is the median absolute residual.

2 Bounded-Influence Regression

Under certain circumstances, M -estimators can be vulnerable to high-leverage observations. A key concept
in assessing influence is the breakdown point of an estimator: The breakdown point is the fraction of ‘bad’
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Figure 1: Objective, ψ, and weight functions for the least-squares (top), Huber (middle), and bisquare
(bottom) estimators. The tuning constants for these graphs are k = 1.345 for the Huber estimator and
k = 4.685 for the bisquare. (One way to think about this scaling is that the standard deviation of the errors,
σ, is taken as 1.)

Method Objective Function Weight Function

Least-Squares ρ
LS

(e) = e2 wLS (e) = 1

Huber ρ
H
(e) =




1

2
e2 for |e| ≤ k

k|e| − 1

2
k2 for |e| > k

wH (e) =


 1 for |e| ≤ k

k/|e| for |e| > k

Bisquare ρ
B
(e) =




k2

6

{
1−

[
1−

( e

k

)2
]3

}
for |e| ≤ k

k2/6 for |e| > k

wB (e) =




[
1−

( e

k

)2
]
2

for |e| ≤ k

0 for |e| > k

Table 1: Objective function and weight function for least-squares, Huber, and bisquare estimators.

3



data that the estimator can tolerate without being affected to an arbitrarily large extent. For example, in
the context of estimating the center of a distribution, the mean has a breakdown point of 0, because even
one bad observation can change the mean by an arbitrary amount; in contrast the median has a breakdown
point of 50 percent.

There are also regression estimators that have breakdown points of nearly 50 percent. One such bounded-
influence estimator is least-trimmed squares (LTS ) regression.

The residuals from the fitted regression model are

ei = yi − (a+ b1xi1 + b2xi2 + · · ·+ bkxik)

= yi − x
′

ib

Let us order the squared residuals from smallest to largest:

(e2)(1), (e
2)(2), . . . , (e

2)(n)

The LTS estimator chooses the regression coefficients b to minimize the sum of the smallest m of the squared
residuals,

LTS(b) =
m∑

i=1

(e2)(i)

where, typically, m = �n/2� + �(k + 2)/2� (i.e., a little more than half of the observations), and the ‘floor’
brackets, � �, denote rounding down to the next smallest integer.

While the LTS criterion is easily described, the mechanics of fitting the LTS estimator are complicated
(see, for example, Rousseeuw and Leroy, 1987). Moreover, bounded-influence estimators can produce un-
reasonable results in certain circumstances (Stefanski, 1991), and there is no simple formula for coefficient
standard errors.2

3 An Illustration: Duncan’s Occupational-Prestige Regression

Duncan’s occupational-prestige regression was introduced in Chapter 1 and described further in Chapter 6
on regression diagnostics. The least-squares regression of prestige on income and education produces the
following results:

> library(car) # mostly for the Duncan data set

> data(Duncan)

> mod.ls <- lm(prestige ~ income + education, data=Duncan)

> summary(mod.ls)

Call:

lm(formula = prestige ~ income + education, data = Duncan)

Residuals:

Min 1Q Median 3Q Max

-29.538 -6.417 0.655 6.605 34.641

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -6.0647 4.2719 -1.42 0.16

income 0.5987 0.1197 5.00 1.1e-05

education 0.5458 0.0983 5.56 1.7e-06

Residual standard error: 13.4 on 42 degrees of freedom

Multiple R-Squared: 0.828, Adjusted R-squared: 0.82

F-statistic: 101 on 2 and 42 DF, p-value: 1.11e-016

2Statistical inference for the LTS estimator can easily be performed by bootstrapping, however. See the Appendix on

bootstrapping for an example.
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Recall from the previous discussion of Duncan’s data that two observations, ministers and railroad con-
ductors, serve to decrease the income coefficient substantially and to increase the education coefficient, as
we may verify by omitting these two observations from the regression:

> mod.ls.2 <- update(mod.ls, subset=-c(6,16))

> summary(mod.ls.2)

Call:

lm(formula = prestige ~ income + education, data = Duncan, subset = -c(6,

16))

Residuals:

Min 1Q Median 3Q Max

-28.61 -5.90 1.94 5.62 21.55

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -6.4090 3.6526 -1.75 0.0870

income 0.8674 0.1220 7.11 1.3e-08

education 0.3322 0.0987 3.36 0.0017

Residual standard error: 11.4 on 40 degrees of freedom

Multiple R-Squared: 0.876, Adjusted R-squared: 0.87

F-statistic: 141 on 2 and 40 DF, p-value: 0

Alternatively, let us compute the Huber M -estimator for Duncan’s regression model, employing the rlm

(robust linear model) function in the MASS library:

> library(MASS)

> mod.huber <- rlm(prestige ~ income + education, data=Duncan)

> summary(mod.huber)

Call: rlm.formula(formula = prestige ~ income + education, data = Duncan)

Residuals:

Min 1Q Median 3Q Max

-30.12 -6.89 1.29 4.59 38.60

Coefficients:

Value Std. Error t value

(Intercept) -7.111 3.881 -1.832

income 0.701 0.109 6.452

education 0.485 0.089 5.438

Residual standard error: 9.89 on 42 degrees of freedom

Correlation of Coefficients:

(Intercept) income

income -0.297

education -0.359 -0.725

The summary method for rlm objects prints the correlations among the coefficients; to suppress this
output, specify correlation=FALSE. The Huber regression coefficients are between those produced by the
least-squares fit to the full data set and by the least-squares fit eliminating the occupations minister and
conductor.
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Figure 2: Weights from the robust Huber estimator for the regression of prestige on income and education.
Observations with weights less than 1 were identified interactively with the mouse.

It is instructive to extract and plot (in Figure 2) the final weights employed in the robust fit, identifying
observations with weights less than 1 using the mouse:

> plot(mod.huber$w, ylab="Huber Weight")

> identify(1:45, mod.huber$w, rownames(Duncan))

[1] 6 9 16 17 18 22 23 24 25 28 32 33

Ministers and conductors are among the observations that receive the smallest weight.
Next, I employ rlm to compute the bisquare estimator for Duncan’s regression. Start-values for the IRLS

procedure are potentially more critical for the bisquare estimator; specifying the argument method=’MM’ to
rlm requests bisquare estimates with start values determined by a preliminary bounded-influence regression.
To use this option, it is necessary first to attach the lqs library, which contains functions for bounded-
influence regression:

> library(lqs)

> mod.bisq <- rlm(prestige ~ income + education, data=Duncan, method=’MM’)

> summary(mod.bisq, cor=F)

Call: rlm.formula(formula = prestige ~ income + education, data = Duncan,

method = "MM")

Residuals:

Min 1Q Median 3Q Max

-29.87 -6.63 1.44 4.47 42.40

Coefficients:

Value Std. Error t value

(Intercept) -7.389 3.908 -1.891

income 0.783 0.109 7.149

education 0.423 0.090 4.710

Residual standard error: 9.79 on 42 degrees of freedom
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Figure 3: Weights from the robust bisquare estimator for the regression of prestige on income and
education. Observations accorded relatively small weight were identified interactively with the mouse.

Compared to the Huber estimates, the bisquare estimate of the income coefficient is larger, and the
estimate of the education coefficient is smaller. Figure 3 shows a graph of the weights from the bisquare
fit, interactively identifying the observations with the smallest weights:

> plot(mod.bisq$w, ylab="Bisquare Weight")

> identify(1:45, mod.bisq$w, rownames(Duncan))

[1] 6 9 16 17 23 28

Finally, I use the ltsreg function in the lqs library to fit Duncan’s model by LTS regression:3

> mod.lts <- ltsreg(prestige ~ income + education, data=Duncan)

> mod.lts

Call:

lqs.formula(formula = prestige ~ income + education, data = Duncan,

method = "lts")

Coefficients:

(Intercept) income education

-7.015 0.804 0.432

Scale estimates 7.77 7.56

In this case, the results are similar to those produced by the M -estimators. Note that the print method
for bounded-influence regression gives the regression coefficients and two estimates of the variation (‘scale’)
of the errors. There is no summary method for this class of models.
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