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Abstract 

 

 

Multivariate data visualization, as a specific type of information visualization, is an active 

research field with numerous applications in diverse areas ranging from science communities 

and engineering design to industry and financial markets, in which the correlations between 

many attributes are of vital interest. 

 In this survey, we will first review the motivations and challenges of multivariate data 

visualization. In section 2, a brief terminology is introduced. Some established techniques for 

multivariate data visualization are described in section 3. These techniques are classified into 

several categories to provide a basic taxonomy of the field. At the end of this survey, we will 

discuss some future research directions. 

 

 

 

 

 

 

 

 

 

 

 

 

 



 5 

1. Introduction 

 

1.1  Motivations 

 

While information is growing in an exponential way, our world is flooded with data which, 

we believe, should contain some kind of valuable information that can possibly expand the 

human knowledge. However, extracting the meaningful information is a difficult task when 

large quantities of data are presented in plain text or traditional tabular form. Effective 

graphical representations of the data thus enjoy popularity by harnessing the human’s visual 

perception capabilities. 

Information visualization is the use of computer-based interactive visual representations 

of abstract and non-physically based data to amplify human cognition. It aims at helping users 

to effectively detect and explore the expected, as well as discovering the unexpected to gain 

insight into the data. For multivariate data visualization, the dataset to be visually analyzed is 

of high dimensionality and these attributes are correlated in some way.  

Multivariate data are encountered in all aspects by researchers, scientists, engineers, 

manufacturers, financial managers and various kinds of analysts. Multivariate data 

visualization is hence strongly motivated by the many situations when they are trying to 

obtain an integrated understanding of the data distributions and investigate the 

inter-relationships between different data attributes. Such an effective visual display tool is 

demanded to facilitate users to identify, locate, distinguish, categorize, cluster, rank, compare, 

associate or correlate the underlying data [3]. 

 

1.2  Challenges 

 

Multivariate data visualization faces the same challenges as information visualization does: 

Finding good visual representations of a problem can be hard and undeterministic. In addition, 

multivariate data poses problems in encoding its attributes in a single visual display. 

 Mapping. Finding a suitable mapping of high-dimensional multivariate data into a 

2D visual form is never a simple task. It usually depends on the nature of datasets to 

be visualized and is more related to human perception. Also, association of data 

attributes to graphical entities requires extreme caution to avoid overwhelming the 

observer’s viewing ability. Conjunction of several elements in the representations 

may induce cognition overload to the users [6] and graphical attributes should 

therefore be carefully selected such that they are easy to untangle. It is important 

that different attributes can be viewed holistically for integrated analysis and, at the 

same time, each dimension can be judged by users separately and independently. 
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 Dimensionality. Multivariate data is often of huge size and high dimensionality that 

will most likely result a dense structure. It is hence difficult to present such data in a 

single visual display, making it challenging to enable users to explore the data space 

intuitively and interactively, as well as discriminating individual dimensions. Dual 

view and distortion skills like fisheyes may be helpful to solve this problem. 

Furthermore, the ordering of dimensions has a major impact on the expressiveness 

of visualization [7]. Different arrangement allows different conclusions to be drawn, 

but no ordering principle is established so far.  

 Design Tradeoffs. Visualization can provide a qualitative overview of large and 

complex datasets so that users can look for structure, features, patterns, trends and 

relationships more effectively [4]. Due to the high dimensionality of multivariate 

data, we inevitably sacrifice the ability to show the details of each attributes [1] as 

we have fewer graphic attributes for encoding. This situation may not be flavored 

when quantitative analysis is required. For multivariate data visualization, there is 

always a tradeoff between amount of information, simplicity and accuracy. 

 Assessment of Effectiveness. The ultimate goal of multivariate data visualization is 

to gain insight into the data and show the possible correlation between different 

attributes. In most cases certain correlations are not yet discovered prior to looking 

at the visual display, and they are exactly what we want to acquire after visualization. 

It is a paradox [5] that prohibits the assessment of effectiveness of an information 

visualization technique: We do not know what valuable knowledge is present in the 

data, so we hope to gain insight by visualizing it. Nevertheless, if we known nothing 

about the pattern or relationship to be shown in the data representation, we can 

never assess the effectiveness of a particular visualization technique. 

      

2. Concepts and Terminology 

 

2.1  Dimensionality 

 

Dimensionality of a problem in information visualization refers to the number of attributes, or 

more generally as variables, that presents in the data to be visualized [2]. For one-dimensional 

data, which is also known as univariate data, consists of only one attributes, such as a 

collection of houses characterized by the cost. They can be visualized effectively by 

traditional tools like table and histogram. Interpretation of two-dimensional or bivariate data 

usually utilizes the x-y coordinates of a 2D space. A conventional approach is to plot one 

variable against the other called scatterplot, see Figure 2.1. 
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Figure 2.1: A scatterplot illustrating wine consumption against deaths from heart disease. [8] 

 

 Technically, multivariate data, also termed hypervariate data, is defined for a high 

dimensionality of three or above. However, as three-dimensional space are what we are living 

in, three-dimensional or trivariate data is often entertained separately. Modeling the data in a 

3D space is the most straightforward way, but problems arise with displaying it in a 

two-dimensional representation [2]. It is hard to compare two points along the same axis, see 

Figure 2.2(a). A feasible solution, as shown in Figure 2.2(b), is to project the points onto pairs 

of axes in a two-dimensional scatterplot. 3D surfaces such as Figure 2.3(a) also encountered 

the same difficulty [2], where the minimum value can only be obtained after altering the view 

as in Figure 2.3(b). Obviously, orientation becomes crucial when dimensionality increases 

and proper interaction should be able to tackle this problem.    

 

(a) 

 

(b) 

 

Figure 2.2: (a) A 3D scatterplot, (b) Projection of the points in (a) onto two of the axes [9]. 

 

(a) 

 

(b) 

 

Figure 2.3: (a) A 3D surface, (b) A view of (a) by changing the orientation [10]. 
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 The conceptual boundary between low and high dimensionality is not always precisely 

stated [11]. High-dimensional data is used in a loose manner; it can be arbitrarily defined, but 

it usually depicts a dimensionality of more than four. It is important to observe that geometric 

projections in more than four-dimensional are ineffective to convey information to human, 

which is due to the significant differences to perceive between low and high dimensionality.  

 

2.2  Multidimensional and Multivariate 

 

The terms multidimensional and multivariate are often used vaguely. Strictly speaking, 

multidimensional refers to the dimensionality of the independent dimensions while 

multivariate refers to that of the dependent variables [12]. The more appropriate term for 

multivariate data visualization should be multidimensional multivariate data visualization 

[13]. Nevertheless, a set of multivariate data is in high dimensionality and can possibly be 

regarded as multidimensional because the key relationships between the attributes are 

generally unknown in advance. The multidimensional property is therefore implied in 

common usage.  

For convenience, the term attributes denote both independent dimensions and dependent 

variables. It also worth noting that multivariate data visualization is rather generic and does 

not categorize itself clearly between information visualization and scientific visualization. 

 

3. Visualization Techniques 

 

3.1  Classifications 

 

Keim and Kriegel [14] [15] divided visual data exploration techniques for multidimensional 

multivariate data into six classes, namely geometric, icon-based, pixel-oriented, hierarchical, 

graph-based and hybrid techniques. We will adopt this taxonomy and tailor it to multivariate 

data visualization techniques, which are classified into four broad categories according to the 

overall approaches taken to generate resulting visualizations [11]: Geometric projection, 

pixel-oriented techniques, hierarchical display and iconography. They are elaborated in the 

following sections. Some representative techniques in each group are described in detail. 

 

3.2  Geometric Projection 

 

Geometric projection techniques aim at finding informative projections and transformations 

of multidimensional datasets [14]. It may map the attributes to a typical Cartesian plane like 

scatterplot, or more innovatively to an arbitrary space such as parallel coordinates.  
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Methods fall in this category are good for detecting outliers and correlation amongst 

different dimensions, and handling huge datasets when appropriate interaction techniques are 

introduced [15]. Intrinsically all data attributes are treated equally, but we must be aware that 

all dimensions may not be perceived equally [2]. As the order in which axes are displayed 

affects our perception [14], rearrangement is important if the display should not be biased. 

Another potential problem is visual cluttering and record overlapping [14] which overwhelms 

the user’s perception capabilities due to the high dimensionality or the large size of the data. 

Some typical techniques using geometric projection are discussed next. 

 

3.2.1 Scatterplot Matrix 

 

Scatterplot is used for bivariate discrete data in which two attributes are projected along the 

x-y axes of the Cartesian coordinates. Scatterplot matrix is an extension for multidimensional 

data where a collection of scatterplots is organized in a matrix simultaneously to provide 

correlation information among the attributes, see Figure 3.1. We can easily observe patterns in 

the relationships between pairs of attributes from the matrix, but there may be important 

patterns in higher dimensions which are barely recognized in it [17]. Another limitation is that 

it becomes chaotic when the number of points, that is the number of data items, is too large. 

 

Figure 3.1: A scatterplot matrix for 5-dimensional data of 400 automobiles [17]. 

 

Fortunately the technique of brushing [18] can be applied to address the above problem. 

Brushing aims interpretation by highlighting a particular n-dimensional subspace in the 

visualization [13], that is, the respective points of interested are colored or highlighted in each 

scatterplot in the matrix. In Figure 3.1, automobiles are color-coded by the number of 

cylinders. Manufacturers can analyze the performance of the cars based on the number of 

cylinders for improvements, while customers can decide how many cylinders they need in 

order to suit their needs. 
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3.2.2 Prosection Matrix 

 

Prosection was first introduced by Furnas and Buja [19]; Tweedie and Spence [20] later 

extended it to prosection matrix which supports a higher dimensionality. A typical prosection 

is shown in Figure 3.2(a). In the simplest sense, prosection is the orthogonal projections 

where the data items lie in the selected multidimensional range are colored differently [15]. 

The yellow rectangles in Figure 3.2(b) indicate the tolerances on parameter values, which is 

particularly useful for manufacturers to select appropriate parameter ranges. Yet it gives less 

information about the correlations between more than two attributes. 

 

 
 

Figure 3.2: (a) A prosection, (b) A prosection matrix [21]. 

 

3.2.3 HyberSlice 

 

Like the scatterplot and prosection matrix, HyperSlice [22] has a matrix graphics representing 

a scalar function of the variables [23], see Figure 3.3. This method targets at continuous scalar 

functions rather than discrete data. The most significant improvement over scatterplot is the 

interactive data navigation around a user defined focal point [23]. An enhanced HyperSlice 

was also proposed [24] which incorporate the concept of display resolution supported by 

space projection, together with the concept of data resolution provided by wavelets to form a 

powerful multiresolution visualization system. 

 

(a) 

 

(b) 

 

Figure 3.3: (a) Effect of dragging a slice [22], (b) HyperSlice for 4D function [23]. 
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3.2.4 Hyberbox 

 

Hyperbox [25] works similarly with the above techniques, except that the plots are now 

constructed as n-dimensional box instead of a matrix, as shown in Figure 3.5. The box is 

depicted in two dimensional because it is impossible to model the box exactly in an 

n-dimensional space. Hyberbox is a more powerful tool as it is possible to map variables to 

both size and shape of the face. It also allows emphasizing or de-emphasizing some variables 

[23]. However, the length and orientation are arbitrary which may convey the wrong 

information as it violates the “banking to 45 degrees” principle [26]. 

 

 

 

Figure 3.5: (a) A hyberbox [23]. Figure 3.6: Parallel coordinates [17]. 

 

3.2.5 Parallel Coordinates 

 

Parallel coordinates [27] [28] [29] is a well-know technique where attributes are represented 

by parallel vertical axes linearly scaled within their data range. Each data item is represented 

by a polygonal line that intersects each axis at respective attribute data value, see Figure 3.6. 

Parallel coordinates can be used to study the correlations among attributes by spotting 

the locations of the intersection points [23]. Also, they are effective for revealing the data 

distributions and functional dependencies. Nevertheless, one major limitation is the limited 

space available for each parallel axis. Visual clutter can severely hamper the user’s ability to 

interpret and interact with the visualizations [11]. Similar problem arises when the 

dimensionality of the data is too high that the axes are packed very closely. Same as the 

previous techniques, brushing may be applied to aid interpretation. 

Circular Parallel Coordinates [30] is one of the variations adopting a radial arrangement 

of the axes, as illustrated in Figure 3.7. Hierarchical Parallel Coordinates [31] is an extension 

that targets at large datasets. It displays the aggregation information derived from a 

hierarchical clustering of the data [11]. These clusters are displayed at different levels of 

abstraction with proximity-based coloring and structure-based brushing [32], see Figure 3.8. 
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Figure 3.7: Circular Parallel  
coordinates [30]. 

Figure 3.8: Hierarchical Parallel Coordinates with different 
level of abstractions [31]. 

 

3.2.6 Andrews Curve 

 

Andrews Curve [33], as shown in Figure 3.9, plots each data item as a curved line, which is 

similar to a Fourier transform of a data point [30]. Close points result similar curves and 

curves for distant points are distinct, which is useful for detecting clusters and outliers [34]. It 

can cope with many dimensions but is computationally expensive to display large datasets. 

 

3.2.7 Radical Coordinates Visualization 

 

Radical Coordinates Visualization [30] is similar to parallel coordinates in spirit, in which n 

lines emanate radically from the center of the circle and terminate at the perimeter, as shown 

in Figure 3.10. Each line is associated with one attribute; spring constants attached to the data 

attribute values define the positions of the data points along the lines. Points with 

approximately equal or similar dimensional values lie closer to the center. 

 

3.2.8 Star Coordinates 

 

Star coordinates [35] is an extension of typical scatterplots to higher dimensions. Data items 

are presented as points and attributes are represented by the axes arranged on a circle. Initially, 

the angles between the axes are equal and all axes have the same length.  

Users can apply scaling transformations to change the length of an axis, which increases 

or decreases the contribution of an attribute. It also provide rotation transformations that 

change the direction of an axis, so the angles are no more equal and thus making an attribute 

more or less correlated with other attributes. An example of star coordinates after 

transformation is shown in Figure 3.11.It has been found to be useful in gaining insight into 

hierarchically clustered datasets and for multi-factor analysis for decision-making. 
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Figure 3.9: Andrews 
Curves [30]. 

Figure 3.10: Radical 
Coordinates Visualization [30]. 

Figure 3.11: Star Coordinates with 
transformations [35]. 

 

3.2.9 Table Lens 

 

In table lens [36], each row represents a data item and the columns refer to the attributes. 

Each column is viewed as a histogram or as a plot, see Figure 3.12. Table lens was motivated 

by the regularity nature of traditional tables, where information along rows or columns is 

interrelated and can be interpreted as a coherent. It therefore takes advantage in using a 

concept which we are familiar with. It allows users to spot relationships, analyze trends in 

data, make assumptive correlations, easily view and manipulate the entire datasets. 

 

 

Figure 3.12: An example of table lens from Inxight [37]. 

 

3.3  Pixel-Oriented Techniques 

 

The second category for multivariate data visualization is pixel-oriented techniques. The idea 

is to represent an attribute value by a pixel based on some color scale. For an n-dimensional 

dataset, n colored pixels will be needed to represent one data item, with each attribute values 

being placed in separate sub-windows, as illustrated in Figure 3.13.  
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We can further divide these techniques into two subgroups, query-independent and 

query-dependent. Query-independent techniques are favored by data with a natural ordering 

according to one attribute, while query-dependent visualizations are more appropriate if the 

feedback to some query is of interest [14]. For the latter, the distances of attribute values to 

the query, instead of the absolute values, are mapped to colors. Correlations, functional 

dependencies and other relationships between attributes may be detected by relating 

corresponding regions in the multiple windows [14]. Moreover, as each data item is uniquely 

mapped to a pixel, record overlap and visual cluttering are not likely [11]. 

 

Figure 3.13: Pixel-based visualization of 6-dimensional data [15]. 

 

3.3.1 Space Filling Curve 

 

Space Filling Curves are query-independent that provides a better clustering of closely related 

data items [14]. Some well-known examples are curves by Peano and Hilbert [38] [39] and 

Morton [40]. For multivariate data, curves of particular attributes are display in separate 

windows, as shown in Figure 3.14(a) and (b). 

 

(a) 

 

(b) 

 
 

(c) 

 

Figure 3.14: (a) Peano-Hibert, (b) Morton or Z-Curve, (c) Recursive Pattern [15]. 
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3.3.2 Recursive Pattern 

 

Recursive Pattern [41] is another query-independent which is based on generic recursive 

scheme to allow users to influence the arrangement of data items [14]. The arrangement of 

lines and columns is performed iteratively and recursively; the elements to be arranged at 

level i are the patterns resulting from level i-1. Similarly, recursive pattern of each attribute is 

shown in a single window, as illustrated in Figure 3.14(c). 

 

3.3.3 Spiral and Axes Techniques 

 

Spiral and axes techniques are both query-dependent. Spiral technique [42] arranges the 

pixels in spiral form according to the overall distance from the query, as depicted in Figure 

3.15(a). The yellow center represents the data items satisfying the user specified query. Axes 

technique [42] improves the spiral one by including feedback on displacement. Pixels are 

arranged in partial spirals in each quadrant, that is, two attributes are assigned to the axes and 

data items are arranged according to the displacement as shown in Figure 3.15(b). 

For query-dependent techniques, an additional window, like the top left one in Figure 

3.15(c) and (d), is provided for overall distance or displacement. By relating corresponding 

regions in the windows, users can perceive multidimensional clusters or correlations [14]. 

  

(a) 

 

(b)  

 

 

 

i 

 
    j 

(c) 

 

(d) 

 

Figure 3.15: (a) Spiral arrangement, (b) Partial spiral arrangement, (c) Spiral technique result 

of an 8-dimensional dataset, (d) Axes technique result of the same dataset [15]. 
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3.3.4 Circle Segment 

 

The design of circle segment [43] is to assign attributes on the segments of a circle. Data 

items are arranged within a segment so that a single data item appears in the same position at 

different segments [11]. The ordering and colors of the pixels are similarly determined by 

their overall distance to the query. Examples of circle segments are shown in Figure 3.16. 

 

(a) 

 

(b) 

 

Figure 3.16: (a) Circle segment arrangement for 8-diemensaionl data [15],  

(b) An example of circle segments [7]. 

 

3.3.5 Pixel Bar Chart 

 

Pixel bar chart [44], derived from regular bar chart, presents data values directly instead of 

aggregating them into a few data values. Bars can be conventional histogram which plots one 

attributes against its values as shown in Figure 3.17, or x-y diagram that plots one attribute 

against another as illustrated in Figure 3.18. Each data item is represented by a single pixel 

and is placed in the bars accordingly. Ordering within the bars is determined by two 

additional attributes. Pixel color can be used to encode the values of one attributes.  

For higher-dimensional data, multi-pixel bar charts are proposed, see Figure 3.18. Charts 

are duplicated and different attribute is colored-coded for each chart. Thus the same data item 

has the same relative position within each of the corresponding bars for detecting correlations. 

 

(a) 

 

(b) 

 

Figure 3.17: (a) Equal-width pixel bar chart, (b) Equal-height pixel bar chart [44]. 
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Figure 3.18: Multi-pixel bar chart with color encoding different attributes [44]. 

 

3.4  Hierarchical Display 

 

Hierarchical techniques subdivide the data space and present subspaces in a hierarchical 

fashion [14]. Attributes are treated differently, with different mappings producing different 

views of the underlying data. Therefore interpretation of resulting plots requires training [11]. 

The techniques lay in this category concern mainly hierarchical data, or data in which several 

attributes are more important to users or of more interest. 

 

3.4.1 Hierarchical Axis 

 

In hierarchical axis [45] [46] [47], axes are laid out horizontally in a hierarchical fashion as 

illustrated in Figure 3.19(a). This technique can plot many attributes in one screen [23]. One 

simple example is the histograms within histograms plot. A matrix version, as shown in 

Figure 3.19(b), is also introduced to enhance perception similar to scatterplot matrix. 

 

(a) 

 

(b) 

 

Figure 3.17: (a) Hierarchical axes, (b) Histograms within histograms matrix [23]. 
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3.4.2 Dimensional Stacking 

 

Dimensional stacking [48], also called general logic diagrams, is a variation of hierarchical 

axis [23]. It partitions the data space into 2-dimensional subspaces which are stacked into 

each other [15], as depicted in Figure 3.18. Those important attributes should be chosen for 

the outer levels. This technique is especially adequate for discrete categorical or binned 

ordinal values. A major advantage of dimensional stacking over hierarchical axis is that no 

aggregation function is needed to plot the data, such as the previous case of histogram [23]. 

 

(a) 

 

(b) 

 

Figure 3.18: (a) Partition of dimensional stacking, (b) An example [15]. 

 

3.4.3 Worlds Within Worlds 

 

Another well-know hierarchical technique is worlds within world, or n-vision [49]. The data 

space is now subdivided into 3-dimenstional subspaces. It generates an interactive hierarchy 

display, instead of the static objects in the previous one, by using powerful 3D rendering [23]. 

It allows the exploration of n-dimensional function spaces, but could also be adapted to 

n-dimensional datasets [30]. Figure 3.19 shows an example that encodes 5-dimenisonal data. 

 

 
 

Figure 3.19: N-Vision [50]. Figure 3.20: Treemap [52]. 
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3.4.4 Treemap 

 

Treemap [51], as shown in Figure 3.20, uses a hierarchical partitioning of the screen into 

regions, depending on the attribute values. The sizes of the nested rectangles represent the 

attribute values, which provide extra information over simple mapping of dimensions only. 

The color of the regions may encode an additional attribute. Treemap is suitable to obtain an 

overview on large datasets with multiple ordinal attributes [15]. Moreover, it subdivides the 

display in a space-filling manner that fully utilizes the available display space [53].  

 

3.5  Iconography 

 

Iconographic or icon-based techniques map each multidimensional data item to an icon, or 

more specifically a glyph. The visual features vary depending on the data attribute values [11]. 

Several graphical parameters are usually contained in an icon, which makes it possible to 

handle multidimensional data. Besides, observations of graphical features are pre-attentive 

which is welcomed by human. However, unlike geometric techniques that treat all the 

dimensions equally, some features in glyphs are more salient than others [11], adjacent 

elements are easier to be related and accuracy of perceiving different graphical attributes 

varies between humans tremendously. It thereby introduces biases in interpreting the result. 

 

3.5.1 Chernoff Faces 

 

Chernoff face visualization [54] is probably the most famous in iconography. Two attributes 

are mapped to the 2D position of a face and remaining attributes are mapped to its properties 

of the face, for instance, the shape of nose, mouth, eyes and that of the face itself, as 

illustrated in Figure 3.21. One of the shortcomings is that different visual features are not 

quite comparable to each other [11]. It is also suggested that Chernoff faces can only visualize 

a limited amount of data items [14]. One common issue to all multidimensional icons, 

including Chernoff faces, is that the semantic relation to the task has significant impact on the 

perceptive effectiveness [2]. Yet it will then very much depend on the application domain. 

 

(a) 

 

(b) 

 

Figure 3.21: (a) Chernoff faces in various 2D positions [54], (b) Different facial features [55]. 
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3.5.2 Star Glyph 

 

There are many variants in the glyph family for displaying multidimensional data; star plot 

[56] is one of the most widely used glyphs. The dimensions are represented as equal angular 

axes radiating from the center of a circle [30], with an outer line connecting the data value 

points on each axis, as depicted in Figure 3.22(b). Each data item is presented by one star 

glyph. They are helpful for multivariate datasets of moderate size, but their primary weakness 

is that the display becomes overwhelming when the number of data items increases. Star plots 

can be further combined with other glyphs to encode extra information, an example 

incorporating the traditional box-and-whisker plots is shown in Figure 3.22(c). 

 

(a) 

 

(b) 

 
 

(c) 

 
Figure 3.22: (a) Construct a star plot [57], (b) Group of star glyphs [30], (c) Box plot stars [58]. 

 

3.5.3 Stick Figure 

 

Stick figure [59] is another classical icon-based technique that again maps two attributes to 

the display axes and the remaining to the rotation angle, length, thickness or color of the 

limbs, as depicted in Figure 3.23(a). When the data items are relatively dense with respect to 

the display dimensions, the packed icons exhibit some texture patterns that vary according to 

the data features, which are detected by pre-attentive perception [14]. However, the visual 

discernment of an important pattern is highly dependent upon the selection of an appropriate 

graphical attribute. This selection process is therefore deterministic and can a bottleneck [23]. 
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(a) 

 

(b) 

 

(c) 

 

Figure 3.23: (a) Stick figure family [23], (b) 5D image data using stick figures,  

(c) Part of (b) in original size [60]. 

 

3.5.4 Shape Coding 

 

Shape coding [61] visualizes data using small arrays of pixels. Each data item is represented 

by one such array, and the pixels are mapped to a color scale according to the attribute values, 

see Figure 3.24. Pixels in the array are placed in the form of square or rectangle and the arrays 

are arranged successively in a line-by-line fashion [14]. These arrays can contain an arbitrary 

number of pixels, making it possible for multidimensional data visualization. 

 

(a) 

 

(b) 

 

Figure 3.24: (a) Shape coding array [15], (b) An example [61]. 

 

3.5.5 Color Icon 

 

Color icon [62] is a combination of the pixel-based spiral axes and icon-based shape coding 

techniques. Pixels are replaced by arrays of color fields that represent the attribute values 

similar to shape coding, as illustrated in Figure 3.25(c). Color, shape, size, orientation, 

boundaries and area sub-dividers can all be used to map the multidimensional data [23]. Color 

icon therefore merges color, shape and texture perception for iconographic integration [62]. 
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(a) 

 

(b) 

 
(c) 

 

Figure 3.25: (a) 5D image data using color icons, (b) Part of (a) in original size [60],  

(c) Color icon scheme [15]. 

 

3.5.6 Texture 

 

When large multidimensional data is presented in icons, such as stick figures and color icons 

mentioned above, it produces some textures which allow users to gain insight into the overall 

relationships between attributes, in addition to individual data items encoded by the icons 

respectively. With the recent advance in texture synthesis techniques [63] [64], it is now 

feasible to apply textures directly in multivariate data visualization. 

 

 

Figure 3.26: Hand-crafted example using textures to visualize 3D data [66]. 
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Richly detailed and varying texture patterns have vast potential in visualizing 

multivariate data. Ware and Knight [65] conducted a pioneer vision research on using texture 

for information display. They identified three dominant visual dimensions of textures, namely 

orientation, size and contrast. Nevertheless the dimensionality of visual texture is very high, 

other dimensions include but not limit to hue, luminance, scale, regularity, periodicity, 

directionality, homogeneity, transparency, fuzziness and level of abstraction. 

Among all, Interrante [66] proposed to harness natural textures of multivariate data 

visualization. Figure 3.26 shows a hand-crafted example encoding three-dimensional data 

with one dimension of color and two dimensions of texture. Tang et al. [67] applied natural 

near-regular textures to visualize weather data with multi-layer controllable texture synthesis. 

Additional attributes can be mapped to the foreground texture that is overlaid upon the 

background texture. Figure 3.27 shows one of the resulting visualizations. 

 

 
Figure 3.27: Texture synthesis result for large regions in China [67]. 

 

Healey et al. have been working on methods for visualizing large, complex and 

multidimensional datasets [68] [69] [70]. Apart from the previous approach harnessing natural 

and photographic textures, they proposed from a completely different direction of using 

nonphotorealistic textures with perceptually-based brush strokes [71]. They used painted 

brush strokes, as shown in Figure 3.28, to represent multidimensional data elements. Each 

data attribute is mapped to a specific nonphotorealistic property such as color, orientation, 

coverage, size, coarseness and weight. The attributes values can thus be identified from the 

different visual appearances of the brush strokes. 
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The major advantage of using textures in multivariate data visualization is that they 

contain various visual dimensions that human can distinguish effectively and pre-attentively. 

Besides, the outcomes are generally more engaging and aesthetic that are more attractive and 

favorable, independent of what type of textures are being used. But problems remain in 

finding a suitable mapping from data attributes to texture features. Contrast illusions are also 

induced when we are comparing the scale and orientation of textures [1], which may cause 

misperception of data. 

 

 

Figure 3.28: Nonphotorealistic visualization of weather conditions [68]. 
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4. Discussion and Conclusion 

 

In this survey, we reviewed some important techniques for multivariate data visualization. In 

section 1, we presented the motivations and challenges of visualizing high-dimensional 

multivariate data. A brief terminology on the topic was introduced in section 2, with an 

emphasis on dimensionality and the concept of multidimensional multivariate data. In section 

3, we categorized multivariate data visualization techniques into four classes, namely 

geometric projection, pixel-oriented techniques, hierarchical display and iconography, based 

on a scheme proposed by Keim and Kriegel for general information visualization techniques. 

We aimed at providing a comprehensive overview on these techniques, which is arguable on 

the basis of their major advantages and limitations. 

Geometric projection techniques were long established before the field of information 

visualization actually emerged. We are too familiar with the Cartesian space; it does not 

require us much effort to understand the representations of such techniques. However, it 

becomes problematic when the dimensionality of the data increases, as we can only map three 

dimensions to a 3D space. 

 Pixel-oriented techniques encode each data item as pixels. The corresponding pixels 

appear at the same position in each respective window. With suitable rearrangement, user may 

observe the inter-relationships between attributes, trends and patterns in the underlying data. 

Hierarchical displays are derived from the fundamental concept of hierarchical trees. They are 

very effective in visualizing hierarchical data, which is also their limitation. The outcomes of 

pixel-oriented techniques and hierarchical display are not as straightforward as those of 

geometric projection do; training may be required in order to understanding the visualizations. 

Iconography uses a multidimensional icon, or glyph, as the unit of visualization. A glyph 

has numerous graphical properties that data attributes can map to. When the glyphs, which are 

essentially data items, are densely packed together, it produces some texture patterns. Users 

are thus able to study the overall features and relationships in the data. While color has been 

used extensively to encode an addition dimension, it may be wise to replace its role by 

textures that obviously provide more graphical attributes for higher dimensional data. 

With the information explosion in the last decade, people are now able to access huge 

amount of data easily from the internet; at the same time companies and institutions keep 

growing their large databases. Some kind of information, which could be financially, 

academically or even personally useful, is certainly under the veil of the impersonal data.  

A picture is worth a thousand words. We believe multivariate data visualization has it 

vantage in helping us to gain insights into the terabyte data, as well as recognize the hidden 

correlations between attributes, which is beneficial to individuals, organizations, and possibly 

the society.    
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