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only in physiological but also in pathological processes1. Although 
most reported miRNA expression profiles have been generated from 
solid tissues, there is growing evidence that miRNA profiles are readily 
accessible from body fluids, such as blood2,3. The aim of our multi-
center study was to elucidate and compare blood expression profiles 
of 863 miRNAs for different human diseases to test for disease-specific 
alterations. The generated blood-based ‘miRNome’ data have been 
deposited in the Gene Expression Omnibus and updated versions are 
available at http://genetrail.bioinf.uni-sb.de/wholemirnomeproject/. 
We applied identical standardized experimental and biostatistical pro-
cedures to the 454 analyzed blood samples from individuals with lung 
cancer, prostate cancer, pancreatic ductal adenocarcinoma, melanoma, 
ovarian cancer, gastric tumors, Wilms tumor, pancreatic tumors, 
multiple sclerosis, chronic obstructive pulmonary disease (COPD),  
sarcoidosis, periodontitis, pancreatitis or acute myocardial infarction 
and from unaffected individuals (controls). All participating cent-
ers had to contribute samples to the control group (Supplementary 
Table 1). The different control cohorts had a high degree of 
reproducibility between the centers (Supplementary Fig. 1).

The platform we used is a highly specific primer extension– 
based microarray that shows a very small degree of cross-
hybridization and can be used to distinguish between members 
of the let-7 family4. To test for technical variance, we repeated the 
measurements on four samples (two blood samples and two tissue 
samples) and found a median correlation of 0.97. The correla-
tion between different samples was significantly lower as shown 
by two-tailed unpaired Wilcoxon Mann-Whitney test (P < 0.05) 
(Supplementary Fig. 2). To estimate the biological variance, we 
analyzed blood samples taken from a healthy individual at three 
different time points during the day (9 a.m., 12 noon and 3 p.m.), 
with duplicate measurements at each time. Median correlation 
between the time points was 0.98 and between duplicates it was 
0.99 (Supplementary Fig. 3).

On average, we found for each disease 103 deregulated miRNAs 
(P < 0.05; t-test after Benjamini-Hochberg adjustment). A total 
of 62 miRNAs (7.18% of all 863) were deregulated in at least six 
diseases in comparison to controls (Supplementary Table 2), and 
24 miRNAs (2.78%) were deregulated in >50% of the 14 analyzed 
diseases. One miRNA (hsa-miR-320d) was deregulated in  
11 diseases and three miRNAs (hsa-miR-423-5p, hsa-miR-146b-3p  
and hsa-miR-532-3p) were deregulated in nine of the tested 
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In a multicenter study, we determined the expression profiles 
of 863 microRNAs by array analysis of 454 blood samples from 
human individuals with different cancers or noncancer diseases, 
and validated this ‘miRNome’ by quantitative real-time PCR. 
We detected consistently deregulated profiles for all tested 
diseases; pathway analysis confirmed disease association of the 
respective microRNAs. We observed significant correlations  
(P = 0.004) between the genomic location of disease-
associated genetic variants and deregulated microRNAs.

MicroRNAs (miRNAs) can regulate hundreds of genes post-
transcriptionally and appear to regulate virtually all cellular pro
cesses. Owing to these properties, miRNAs have a critical role not 
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diseases. Known properties of these miRNAs are listed in 
Supplementary Table 2. Most miRNAs were consistently deregu-
lated, that is, they were either up- or downregulated in the major-
ity of diseases (Fig. 1). Analysis of the human microRNA disease 
database5 revealed that only a few of the miRNAs deregulated in 
blood were also previously reported as deregulated in solid tissues 
derived from individuals with the same diseases (Supplementary 
Table 3). A total of 121 miRNAs (14%) were not deregulated in 
any of the 14 analyzed diseases.

We carried out pathway analysis of putative target genes for 
miRNAs that were deregulated in at least six of 14 diseases (n = 62)  
and for miRNAs that were not deregulated in any disease (n = 121).  
We extracted the targets with P < 0.001 for both miRNA sets 
using GeneTrail6,7. We found a total of 7,598 target genes for both 
miRNA sets. Of these genes, 27% were targets of miRNAs in both 
sets, 21% were targets of miRNAs that were frequently deregu-
lated and 52% were targets of miRNAs that were not deregulated 
in our study. We applied an over-representation analysis relying  
on the hypergeometric distribution using GeneTrail to find signi
ficantly enriched (P < 0.05) biochemical pathways. For the set of fre-
quently deregulated miRNAs, we found several disease-associated  
pathways (Supplementary Table 4) including ‘pathways in cancer’.  
We did not detect any enriched pathway for the target genes of 
the 121 miRNAs that were not significantly deregulated in any 
disease. Pathways with significantly fewer (P < 0.05) targets than 
expected are indicated in Supplementary Table 4.

To explore whether the significantly deregulated miRNAs are in 
close genomic physical proximity to known susceptibility variants, 
we extracted 3,495 published single-nucleotide polymorphisms 
(SNPs) from the US National Institutes of Health genome-wide 
association study catalog (accessed 28 July 2010) and searched 
for the coding sequence of miRNAs in a genomic window of  
250 kilobases (kb) around these SNPs. We detected 241 cases of 
physical proximity between SNPs and miRNAs. Of these, seven 
were related to diseases included in our study, representing 
interesting candidates for testing the hypothesis that miRNA 
deregulation depends on nearby genetic variants. Of the seven 

SNPs, four are associated with heart diseases, including cardiac 
structure and function (rs7910620) and mean platelet volume 
(rs2393967, rs10914144 and rs10506328), two with multiple scle-
rosis (rs703842 and rs17445836) and one with melanoma. Notably, 
the relevant miRNA was significantly deregulated (P < 0.05) in 
the same disease, in six of the seven cases. To test whether these 
results could occur by chance, we carried out 106 non-parametric 
permutation tests. The proximity of genetic variants and deregu-
lated miRNAs was significant (P = 0.004). All pairs of SNPs and 
adjacent miRNAs are summarized in Supplementary Table 5 and 
one representative example is presented in Figure 2.

To distinguish individuals with disease from controls or from 
individuals with other diseases by miRNA profiling, we applied 
machine-learning techniques. Each of the 14 diseases was separated 
from controls with an average accuracy of 88.5%, ranging from at 
least 81.3% to up to 100% (Supplementary Table 6). By using only 
two miRNAs, we obtained an average accuracy of 72.5%, whereas 
the use of ten miRNAs resulted in an average accuracy of 80.6% 
(P = 0.0002, two-tailed unpaired Wilcoxon Mann-Whitney test) 
(Supplementary Fig. 4). Next, we performed pair-wise classifica-
tion analyses between different diseases using samples collected at 
the same site to exclude between-institution bias. For the separa-
tion between pancreatic cancer and other pancreatic diseases, the 
accuracy was not significant (P > 0.05). However, this result does 
not necessarily imply a general similarity between miRNA profiles 
of malignant and nonmalignant diseases of the same organ. For 
example, we could distinguish lung cancer from COPD with an 
accuracy of 91.7%, corresponding to a highly significant classifica-
tion (P < 10−6). COPD is a common co-morbidity of lung cancer 
and also precedes tumors in 50–90% of cases8. Thus, a biomarker 
separating individuals with lung cancer from those with COPD 
but without cancer may prove useful.

We performed an independent validation of the miRNA profiles 
using different technologies and cohorts of individuals. In previous 
studies, we had confirmed 474 deregulated miRNAs in different 
diseases by performing quantitative real-time PCR (qRT-PCR) 
on samples from several individuals with lung cancer, melanoma,  
glioma and acute myocardial infarction8–11. Here we addition-
ally performed a large-scale validation for a larger dataset includ-
ing data for 44 individuals with lung cancer and 41 with COPD.  
We selected 18 significantly deregulated (P < 0.05) miRNAs that sepa-
rate both diseases in quadruplicate by  qRT-PCR using the SmartChip  
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Figure 1 | Bubble plot of miRNAs that are up- or downregulated in several 
diseases. Bubble sizes correspond to the number of deregulated miRNAs. Orange 
bubbles denote miRNAs that are more often significantly down-regulated  
(P < 0.05) than upregulated. Blue bubbles denote miRNAs that are either more 
often upregulated or equally frequent up- and downregulated. Homo sapiens 
(hsa)-miR-320d was significantly deregulated (P < 0.05) in 11 diseases.

Figure 2 | Representative example for the physical proximity of a significantly 
deregulated miRNA and a known SNP. A schematic of the human chromosome 
10q21 with hsa-miR-1296 (magenta) and four SNPs (arrows) including SNP 
rs2393967 (SNP database (dbSNP) accession number) that is associated 
with heart diseases. The plot shows expression and s.d. of hsa-miR-1296 
in the blood of individuals with acute myocardial infarction (AMI, n = 20) 
compared to that in healthy controls (n = 70). P = 0.006.
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Real-Time PCR System (WaferGen Biosystems). Of those 18 miRNAs,  
we validated 14, that is, these miRNAs were deregulated in a 
comparable manner in array and qRT-PCR experiments. The 
remaining four miRNAs were only rarely expressed as indicated by 
mean threshold cycle (Ct) values >28.5. In Supplementary Table 7  
we list raw qRT-PCR data and the variance for the replicates. 
The overall correlation of the quantile normalized qRT-PCR and 
array results for the 45 analyzed miRNAs (27 miRNAs of previous 
studies and 18 miRNAs in the present study) was as high as 0.86 
(Supplementary Fig. 5). We provide scatter plots and fold changes 
for all tested miRNAs (Supplementary Table 8).

We developed the concept of disease probability plots (DPPs) 
to determine the probability that a miRNA expression profile 
correctly indicates that an individual has one or several of the 
analyzed diseases. We computed the probabilities via a regression 
approach for each individual sample. Analyzing all DPPs, we pre-
dicted the correct disease in 67.45% of all individuals (exemplary 
DPPs are available in Supplementary Fig. 6). Assuming that all 
diseases are almost equally frequent in our dataset, this translates 
into an over eightfold increased accuracy of disease prediction by 
miRNA profiling as compared to random guessing.

Although our study supports the idea that blood cells have an 
miRNA pattern that varies between different diseases, there are 
several points to be considered when blood miRNA patterns are 
associated with diseases. Any association between a miRNA pat-
tern and a disease can be confounded by co-morbidity for another 
disease. Furthermore, blood cells may not contribute equally to 
an miRNA pattern, with expression variation in a few cell types 
accounting for most of the pattern. Indeed, as recently shown for  
27 different cell populations isolated from normal mouse hemato
poietic tissues, different blood cell types have specific miNA  
expression patterns12. Distribution of the complete blood count 
(CBC) is known to vary in disease, for instance owing to cancers 
or diseases of the blood13 or bone marrow, cancers that spread to 
the bone marrow, autoimmune disease or side effects of medica-
tions. There are also variations in CBC in healthy individuals. It is 
possible that changes in miRNA profile in disease reflect shifts in 
the distribution of different blood-cell types. We tested this pos-
sibility using principal-component analysis; specifically, we car-
ried out standard principal-component analysis on the expression 
matrix (http://genetrail.bioinf.uni-sb.de/wholemirnomeproject/) 
and computed for each principal component the fraction of the 
overall data variance. Although it is likely that shifts in cell popu-
lations affect the overall miRNA profiles, we observed that even 
27 different cell populations, represented by the first 27 principal 
components with highest variance, can account for only about 60% 
of the total variance in the miRNA profiles. Taken together, the 
ability to recognize systematic features in human blood cells and 
the relatively small normal CBC variation in healthy individuals 

provides support for the feasibility of using miRNA expression pat-
terns in peripheral blood as the basis for detection of disease13.

Identifying the complex relationships between disease and 
changes in miRNA expression patterns in blood cells could con-
tribute not only to an understanding of the mechanism behind 
the pattern and of disease associations but provide insight into 
the pathological processes because miRNAs in turn influence the 
expression of thousands of genes.

Methods
Methods and any associated references are available in the online 
version of the paper at http://www.nature.com/naturemethods/.

Accession codes. Gene Expression Omnibus: GSE31568.

Note: Supplementary information is available on the Nature Methods website.
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ONLINE METHODS
Blood samples. The blood samples were collected and proc-
essed from five different institutions working closely together 
with the Heidelberg Biomarker Discovery Center (http://www.
bdc-heidelberg.com/biomarker-discovery/index.cfm). The par-
ticipating centers were the German Cancer Research Center 
(Deutsches Krebsforschungszentrum), Saarland University, 
Heidelberg University, Kiel University and Wuerzburg 
University. Groups at each of these centers provided samples 
from individuals with disease and from healthy individuals. 
Blood was extracted using PAXgene Blood RNA tubes (BD).

All blood donors participating in this study gave their informed 
consent. A complete list of screened samples is provided in 
Supplementary Table 1.

miRNA extraction and microarray screening. A total of 2.5 ml 
to 5 ml of blood were extracted in PAXgene Blood RNA tubes. 
The PAXgene Blood RNA tubes ensure stabilization of RNA and 
hence stabilization of the expression profiles. Blood cells were 
obtained by centrifugation at 5,000g for 10 min at room tempera-
ture (18–25 °C). The miRNeasy kit (Qiagen) was used to isolate 
total RNA including miRNA from the resuspended blood cell 
pellet according to the manufacturer’s instructions. The eluted 
RNA was stored at −70 °C.

All samples were shipped overnight on dry ice and analyzed 
with the fully automated Geniom RT Analyzer (febit biomed) at 
febit’s in-house genomic service department using the Geniom 
Biochip miRNA Homo sapiens version v12 to v14. Geniom bio-
chips consist of a meandering microchannel that forms the so-
called ‘biochip’. Each biochip can be used to analyze eight different 
samples independently. The flexible oligomer synthesis is done  
in situ inside the microchannels using a light-directed process. The 
probes were designed as the reverse complements of the mature 
miRNA sequences as published in miRBase plus nucleotides at the 
5′-end of the capture oligonucleotide as needed for the enzymatic 
extension (microfluidic primer extension assay; MPEA). For con-
ventional miRNA hybridization assays the reverse complement of 
the miRNA sequences as published in the miRBase releases version 
12.0 to 14.0 (ref. 14) (in total 863 mature miRNAs and miRNA star 
sequences) were synthesized with seven intraarray replicates4.

We mixed 250 ng of total RNA with 1 µl of 5 pM miRNA spike-in 
mix and dried it in a tabletop speedvac (Univapo 100H). Each RNA 
pellet was fully resuspended in 25 µl of hybridization buffer and 
denatured for 3 min at 95 °C. Until the hybridization, the denatured 
samples were kept on ice. Microarray hybridization was performed 
using the Geniom RT Analyzer and Geniom miRNA biochips 
Homo sapiens. The samples were loaded automatically and hybridi-
zation of unlabeled sample has been carried out for 16 h. On-chip 
sample labeling with biotin was carried out by MPEA4. Therefore, 
streptavidin R-phycoerythrin conjugate (SAPE) solution, antibody 
solution, equilibration buffer (1× NEB 2; New England Biolabs), 
stop buffer (6× SSPE; Applied Biosystems) and enzyme solution 
were placed into the RT Analyzer. The array equilibration was fol-
lowed by incubation with enzyme solution. Enzyme incubation 
was stopped with stop buffer. SAPE staining, signal amplification 
and detection proceeded fully automated within the Geniom RT 
Analyzer. All steps from sample loading to miRNA detection were 
processed fully automatic inside the machine. As internal control 
standards five different probes labeled with Cy3 or biotin (bio) 

were included: 5′-[Cy3]TCACTCATGGTTATGGCAGCACT 
GC-3′ (80 nM), 5′-[bio]GTAGTTCGCCAGTTAATAGTTTGCG-3′  
(12 nM), 5′-[bio]TCTTACCGCTGTTGAGATCCAGTTC-3′ (4 nM),  
5′-[bio]CCCACTCGTGCACCCAACTGATCTT-3′ (0.4 nM) and 
5′-[bio]CCATCCAGTCTATTAATTGTTGCCG-3′ (0.04 nM).

The enzymatic MPEA together with the fully automated han-
dling ensured a high degree of specificity as well as excellent 
reproducibility.

The detection pictures were evaluated using the Geniom Wizard 
Software. For each feature, the median signal intensity was calcu-
lated. Following a background correction step, the median of the 
seven replicates of each miRNA was computed. To normalize the 
data across different arrays, quantile normalization15 was applied 
and all subsequent analyses were carried out using the normalized 
and background subtracted intensity values. Since the miRBase has 
been upgraded twice in the past year from version 12.0 to version 
14, we used for the final data analysis the 863 miRNAs that were 
consistently present in all three versions. The whole miRNome 
data are available for download from the project homepage (http://
genetrail.bioinf.uni-sb.de/wholemirnomeproject/) and in the Gene 
Expression Omnibus16.

Statistical analysis. Single miRNA analyses were carried out using 
t-tests (unpaired, two-tailed) after verifying approximate normal 
distribution using Shapiro-Wilk test. The resulting P values were 
adjusted for multiple testing using Benjamini-Hochberg’s adjust-
ment17. In addition, the area under the receiver characteristic 
curve was computed.

Supervised classification of samples was carried out using sup-
port vector machines (SVM)18 as implemented in the R e1071 
package19. As parameters of the SVM, we evaluated different ker-
nel methods including linear, polynomial (degree 2 to 5), sigmoid 
and radial basis function kernels.

To detect miRNAs that contribute most diagnostic information 
and thus lead to accurate classifications, a subset selection tech-
nique has been applied. Specifically, an iterative filter approach 
based on the t-test was carried out. In each iteration, the s miRNAs 
with lowest P values were computed on the training set in each 
fold of a standard tenfold cross-validation, where s was sampled in 
regular intervals between 2 and 500 miRNAs. The respective subset 
was used to train the SVM and to carry out the prediction of the 
test samples in the cross validation. To compute probabilities for 
classes, a regression approach based on the output of the support 
vectors has been applied. To test for overtraining, nonparametric 
permutation tests were applied. All computations were carried out 
using the publicly available R statistical language19.

To evaluate the classification, we computed accuracy, specificity 
and sensitivity.

Pathway analysis. To detect biochemical networks that are puta-
tively regulated by disease miRNAs, we carried out a so-called 
overrepresentation analysis. For a set of miRNAs, we extracted 
the targets using Genetrail (http://genetrail.bioinf.uni-sb.de/) via 
MicroCosm V5 (http://www.ebi.ac.uk/enright-srv/microcosm/
htdocs/targets/v5/) that uses the miRanda algorithm. To reduce 
the number of false positive miRNA targets, we applied a signifi-
cance value threshold of 0.001 (ref. 6). The set of putative mRNA 
targets of disease relevant miRNAs was used as input for the web-
based gene set analysis tool GeneTrail to find Kyoto Encyclopedia 
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