Map > Data Mining > Predicting the Future > Modeling > Regression > Support Vector Machine
 

Support Vector Machine - Regression (SVR)

Support Vector Machine can also be used as a regression method, maintaining all the main features that characterize the algorithm (maximal margin). The Support Vector Regression (SVR) uses the same principles as the SVM for classification, with only a few minor differences. First of all, because output is a real number it becomes very difficult to predict the information at hand, which has infinite possibilities. In the case of regression, a margin of tolerance (epsilon) is set in approximation to the SVM which would have already requested from the problem. But besides this fact, there is also a more complicated reason, the algorithm is more complicated therefore to be taken in consideration. However, the main idea is always the same: to minimize error, individualizing the hyperplane which maximizes the margin, keeping in mind that part of the error is tolerated. 

Linear SVR

Non-linear SVR
The kernel functions transform the data into a higher dimensional feature space to make it possible to perform the linear separation.

Kernel functions

 
Exercise